Deformation Response of Catenated DNA Networks in a Planar Elongational Field

Copyright © 2020 American Chemical Society. A kinetoplast is a complex catenated DNA network that bears resemblance to a two-dimensional polymeric system. In this work, we use single-molecule experiments to study the transient and steady-state deformation of kinetoplasts in a planar elongational fie...

Full description

Bibliographic Details
Main Authors: Soh, Beatrice W, Doyle, Patrick S
Other Authors: Massachusetts Institute of Technology. Department of Chemical Engineering
Format: Article
Language:English
Published: American Chemical Society (ACS) 2021
Online Access:https://hdl.handle.net/1721.1/135319
Description
Summary:Copyright © 2020 American Chemical Society. A kinetoplast is a complex catenated DNA network that bears resemblance to a two-dimensional polymeric system. In this work, we use single-molecule experiments to study the transient and steady-state deformation of kinetoplasts in a planar elongational field. We demonstrate that kinetoplasts deform in a stagewise manner and undergo transient deformation at large strains, due to conformational rearrangements from an intermediate metastable state. Kinetoplasts in an elongational field achieve a steady-state deformation that depends on strain rate, akin to the deformation of linear polymers. We do not observe an abrupt transition between the nondeformed and deformed states of a kinetoplast, in contrast to the coil-stretch transition for a linear polymer.