Dynamics of rotated spin states and magnetic ordering with two-component bosonic atoms in optical lattices
© 2020 American Physical Society. The microscopic control available over cold atoms in optical lattices has opened new opportunities to study the properties of quantum spin models. While a lot of attention is focused on experimentally realizing ground or thermal states via adiabatic loading, it woul...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Physical Society (APS)
2021
|
Online Access: | https://hdl.handle.net/1721.1/135392 |
_version_ | 1826210337806876672 |
---|---|
author | Venegas-Gomez, Araceli Buyskikh, Anton S Schachenmayer, Johannes Ketterle, Wolfgang Daley, Andrew J |
author_facet | Venegas-Gomez, Araceli Buyskikh, Anton S Schachenmayer, Johannes Ketterle, Wolfgang Daley, Andrew J |
author_sort | Venegas-Gomez, Araceli |
collection | MIT |
description | © 2020 American Physical Society. The microscopic control available over cold atoms in optical lattices has opened new opportunities to study the properties of quantum spin models. While a lot of attention is focused on experimentally realizing ground or thermal states via adiabatic loading, it would often be more straightforward to prepare specific simple product states and to probe the properties of interacting spins by observing their dynamics. We explore this possibility for spin-1/2 and spin-1 models that can be realized with bosons in optical lattices, and which exhibit XY-ferromagnetic (or counterflow spin-superfluid) phases. We consider the dynamics of initial spin-rotated states corresponding to a mean-field version of the phases of interest. Using matrix product state methods in one dimension, we compute both nonequilibrium dynamics and ground and thermal states for these systems. We compare and contrast their behavior in terms of correlation functions and induced spin currents, which should be directly observable with current experimental techniques. We find that although spin correlations decay substantially at large distances and on long timescales, for induction of spin currents, the rotated states behave similarly to the ground states on experimentally observable timescales. |
first_indexed | 2024-09-23T14:48:12Z |
format | Article |
id | mit-1721.1/135392 |
institution | Massachusetts Institute of Technology |
language | English |
last_indexed | 2024-09-23T14:48:12Z |
publishDate | 2021 |
publisher | American Physical Society (APS) |
record_format | dspace |
spelling | mit-1721.1/1353922021-10-28T03:33:07Z Dynamics of rotated spin states and magnetic ordering with two-component bosonic atoms in optical lattices Venegas-Gomez, Araceli Buyskikh, Anton S Schachenmayer, Johannes Ketterle, Wolfgang Daley, Andrew J © 2020 American Physical Society. The microscopic control available over cold atoms in optical lattices has opened new opportunities to study the properties of quantum spin models. While a lot of attention is focused on experimentally realizing ground or thermal states via adiabatic loading, it would often be more straightforward to prepare specific simple product states and to probe the properties of interacting spins by observing their dynamics. We explore this possibility for spin-1/2 and spin-1 models that can be realized with bosons in optical lattices, and which exhibit XY-ferromagnetic (or counterflow spin-superfluid) phases. We consider the dynamics of initial spin-rotated states corresponding to a mean-field version of the phases of interest. Using matrix product state methods in one dimension, we compute both nonequilibrium dynamics and ground and thermal states for these systems. We compare and contrast their behavior in terms of correlation functions and induced spin currents, which should be directly observable with current experimental techniques. We find that although spin correlations decay substantially at large distances and on long timescales, for induction of spin currents, the rotated states behave similarly to the ground states on experimentally observable timescales. 2021-10-27T20:23:16Z 2021-10-27T20:23:16Z 2020 2021-07-08T18:16:35Z Article http://purl.org/eprint/type/JournalArticle https://hdl.handle.net/1721.1/135392 en 10.1103/PHYSREVA.102.023321 Physical Review A Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf American Physical Society (APS) APS |
spellingShingle | Venegas-Gomez, Araceli Buyskikh, Anton S Schachenmayer, Johannes Ketterle, Wolfgang Daley, Andrew J Dynamics of rotated spin states and magnetic ordering with two-component bosonic atoms in optical lattices |
title | Dynamics of rotated spin states and magnetic ordering with two-component bosonic atoms in optical lattices |
title_full | Dynamics of rotated spin states and magnetic ordering with two-component bosonic atoms in optical lattices |
title_fullStr | Dynamics of rotated spin states and magnetic ordering with two-component bosonic atoms in optical lattices |
title_full_unstemmed | Dynamics of rotated spin states and magnetic ordering with two-component bosonic atoms in optical lattices |
title_short | Dynamics of rotated spin states and magnetic ordering with two-component bosonic atoms in optical lattices |
title_sort | dynamics of rotated spin states and magnetic ordering with two component bosonic atoms in optical lattices |
url | https://hdl.handle.net/1721.1/135392 |
work_keys_str_mv | AT venegasgomezaraceli dynamicsofrotatedspinstatesandmagneticorderingwithtwocomponentbosonicatomsinopticallattices AT buyskikhantons dynamicsofrotatedspinstatesandmagneticorderingwithtwocomponentbosonicatomsinopticallattices AT schachenmayerjohannes dynamicsofrotatedspinstatesandmagneticorderingwithtwocomponentbosonicatomsinopticallattices AT ketterlewolfgang dynamicsofrotatedspinstatesandmagneticorderingwithtwocomponentbosonicatomsinopticallattices AT daleyandrewj dynamicsofrotatedspinstatesandmagneticorderingwithtwocomponentbosonicatomsinopticallattices |