Tautological relations via ����-spin structures

<p>Relations among tautological classes on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper M overbar Subscript g comma n"> <mml:semantics> <mml:msub> <...

Full description

Bibliographic Details
Main Authors: Pandharipande, R, Pixton, A, Zvonkine, D
Other Authors: Massachusetts Institute of Technology. Department of Mathematics
Format: Article
Language:English
Published: American Mathematical Society (AMS) 2021
Online Access:https://hdl.handle.net/1721.1/135608
Description
Summary:<p>Relations among tautological classes on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper M overbar Subscript g comma n"> <mml:semantics> <mml:msub> <mml:mover> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">M</mml:mi> </mml:mrow> <mml:mo accent="false">¯<!-- ¯ --></mml:mo> </mml:mover> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>g</mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding="application/x-tex">\overline {\mathcal {M}}_{g,n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are obtained via the study of Witten’s <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="r"> <mml:semantics> <mml:mi>r</mml:mi> <mml:annotation encoding="application/x-tex">r</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-spin theory for higher <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="r"> <mml:semantics> <mml:mi>r</mml:mi> <mml:annotation encoding="application/x-tex">r</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In order to calculate the quantum product, a new formula relating the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="r"> <mml:semantics> <mml:mi>r</mml:mi> <mml:annotation encoding="application/x-tex">r</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-spin correlators in genus 0 to the representation theory of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sans-serif s sans-serif l Subscript 2 Baseline left-parenthesis double-struck upper C right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="sans-serif">s</mml:mi> <mml:mi mathvariant="sans-serif">l</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">C</mml:mi> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathsf {sl}}_2(\mathbb {C})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is proven. The Givental-Teleman classification of CohFT (cohomological field theory) is used at two special semisimple points of the associated Frobenius manifold. At the first semisimple point, the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-matrix is exactly solved in terms of hypergeometric series. As a result, an explicit formula for Witten’s <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="r"> <mml:semantics> <mml:mi>r</mml:mi> <mml:annotation encoding="application/x-tex">r</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-spin class is obtained (along with tautological relations in higher degrees). As an application, the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="r equals 4"> <mml:semantics> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo>=</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">r=4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> relations are used to bound the Betti numbers of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R Superscript asterisk Baseline left-parenthesis script upper M Subscript g Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>R</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> <mml:mo stretchy="false">(</mml:mo> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">M</mml:mi> </mml:mrow> <mml:mi>g</mml:mi> </mml:msub> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">R^*(\mathcal {M}_g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. At the second semisimple point, the form of the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-matrix implies a polynomiality property in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="r"> <mml:semantics> <mml:mi>r</mml:mi> <mml:annotation encoding="application/x-tex">r</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of Witten’s <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="r"> <mml:semantics> <mml:mi>r</mml:mi> <mml:annotation encoding="application/x-tex">r</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-spin class.</p> <p>In Appendix A (with F. Janda), a conjecture relating the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="r equals 0"> <mml:semantics> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">r=0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> limit of Witten’s <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="r"> <mml:semantics> <mml:mi>r</mml:mi> <mml:annotation encoding="application/x-tex">r</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-spin class to the class of the moduli space of holomorphic differentials is presented.</p>