Coalitional game theory based local power exchange algorithm for networked microgrids

© 2019 Elsevier Ltd The future distribution network may encompass a large number of microgrids, in which case local networked microgrids can be formed and all the microgrids in the network be connected to the main grid through a distribution sub-station. To improve the efficiency of the entire netwo...

Full description

Bibliographic Details
Main Authors: Mei, Jie, Chen, Chen, Wang, Jianhui, Kirtley, James L
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Format: Article
Language:English
Published: Elsevier BV 2021
Online Access:https://hdl.handle.net/1721.1/135866
Description
Summary:© 2019 Elsevier Ltd The future distribution network may encompass a large number of microgrids, in which case local networked microgrids can be formed and all the microgrids in the network be connected to the main grid through a distribution sub-station. To improve the efficiency of the entire network rather than focusing on improving the efficiency and reliability of each microgrid, this paper proposes a coalitional-game-theory-based local power exchange algorithm to identify incentives for coalitional operation and help microgrids in the network trade power locally with neighboring microgrids, so as to meet their own power requirements while achieving higher expected individual utility. Compared with the traditional operation situation, simulation results show that the proposed coalitional- game-theory-based local power exchange algorithm can help increase individual microgrid utility in the network. When there are 30 microgrids in the network, for example, each microgrid is expected to have a 16% increment of individual utility on average.