Fabrication and characterization of folded foils supporting streamwise traveling waves

© 2019 Elsevier Ltd A body of work has grown around the use of small amplitude traveling waves on aerodynamic and hydrodynamic surfaces for boundary layer control. In particular, when the traveling wave speed exceeds the free stream velocity, significant drag reductions have been shown in simulation...

Full description

Bibliographic Details
Main Authors: Calisch, Sam, Gershenfeld, Neil, Fan, Dixia, Jodin, Gurvan, Triantafyllou, Michael
Other Authors: Massachusetts Institute of Technology. Center for Bits and Atoms
Format: Article
Language:English
Published: Elsevier BV 2021
Online Access:https://hdl.handle.net/1721.1/135880
Description
Summary:© 2019 Elsevier Ltd A body of work has grown around the use of small amplitude traveling waves on aerodynamic and hydrodynamic surfaces for boundary layer control. In particular, when the traveling wave speed exceeds the free stream velocity, significant drag reductions have been shown in simulation. Building viable prototypes to test these hypotheses, however, has proven challenging. In this paper, we describe a candidate system for constructing structural airfoils and hydrofoils with embedded electromagnetic actuators for driving high velocity traveling waves. Our approach relies on the fabrication of planar substrates which are populated with electromagnetic components and then folded into a prescribed three dimensional structure with actuators embedded. We first specify performance characteristics based on hydrodynamic requirements. We then describe the fabrication of fiber-reinforced polymer composite substrates with prescribed folding patterns to dictate three dimensional shape. We detail the development of a miniaturized single-phase linear motor which is compatible with this approach. Finally, we compare the predicted and measured force produced by these linear motors and plot trajectories for a 200 Hz driving frequency.