Direct Laser Cooling to Bose-Einstein Condensation in a Dipole Trap

© 2019 American Physical Society. We present a method for producing three-dimensional Bose-Einstein condensates using only laser cooling. The phase transition to condensation is crossed with 2.5×104 Rb87 atoms at a temperature of Tc=0.6 μK after 1.4 s of cooling. Atoms are trapped in a crossed optic...

Full description

Bibliographic Details
Main Authors: Urvoy, Alban, Vendeiro, Zachary, Ramette, Joshua, Adiyatullin, Albert, Vuletić, Vladan
Other Authors: Massachusetts Institute of Technology. Department of Physics
Format: Article
Language:English
Published: American Physical Society (APS) 2021
Online Access:https://hdl.handle.net/1721.1/136209
Description
Summary:© 2019 American Physical Society. We present a method for producing three-dimensional Bose-Einstein condensates using only laser cooling. The phase transition to condensation is crossed with 2.5×104 Rb87 atoms at a temperature of Tc=0.6 μK after 1.4 s of cooling. Atoms are trapped in a crossed optical dipole trap and cooled using Raman cooling with far-off-resonant optical pumping light to reduce atom loss and heating. The achieved temperatures are well below the effective recoil temperature. We find that during the final cooling stage at atomic densities above 1014 cm-3, careful tuning of trap depth and optical-pumping rate is necessary to evade heating and loss mechanisms. The method may enable the fast production of quantum degenerate gases in a variety of systems including fermions.