Cohesin Removal Reprograms Gene Expression upon Mitotic Entry
© 2020 Elsevier Inc. As cells enter mitosis, the genome is restructured to facilitate chromosome segregation, accompanied by dramatic changes in gene expression. However, the mechanisms that underlie mitotic transcriptional regulation are unclear. In contrast to transcribed genes, centromere regions...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier BV
2021
|
Online Access: | https://hdl.handle.net/1721.1/136229 |
_version_ | 1826203598250311680 |
---|---|
author | Perea-Resa, Carlos Bury, Leah Cheeseman, Iain M Blower, Michael D |
author_facet | Perea-Resa, Carlos Bury, Leah Cheeseman, Iain M Blower, Michael D |
author_sort | Perea-Resa, Carlos |
collection | MIT |
description | © 2020 Elsevier Inc. As cells enter mitosis, the genome is restructured to facilitate chromosome segregation, accompanied by dramatic changes in gene expression. However, the mechanisms that underlie mitotic transcriptional regulation are unclear. In contrast to transcribed genes, centromere regions retain transcriptionally active RNA polymerase II (Pol II) in mitosis. Here, we demonstrate that chromatin-bound cohesin is necessary to retain elongating Pol II at centromeres. We find that WAPL-mediated removal of cohesin from chromosome arms during prophase is required for the dissociation of Pol II and nascent transcripts, and failure of this process dramatically alters mitotic gene expression. Removal of cohesin/Pol II from chromosome arms in prophase is important for accurate chromosome segregation and normal activation of gene expression in G1. We propose that prophase cohesin removal is a key step in reprogramming gene expression as cells transition from G2 through mitosis to G1. |
first_indexed | 2024-09-23T12:39:49Z |
format | Article |
id | mit-1721.1/136229 |
institution | Massachusetts Institute of Technology |
language | English |
last_indexed | 2024-09-23T12:39:49Z |
publishDate | 2021 |
publisher | Elsevier BV |
record_format | dspace |
spelling | mit-1721.1/1362292021-10-28T04:02:16Z Cohesin Removal Reprograms Gene Expression upon Mitotic Entry Perea-Resa, Carlos Bury, Leah Cheeseman, Iain M Blower, Michael D © 2020 Elsevier Inc. As cells enter mitosis, the genome is restructured to facilitate chromosome segregation, accompanied by dramatic changes in gene expression. However, the mechanisms that underlie mitotic transcriptional regulation are unclear. In contrast to transcribed genes, centromere regions retain transcriptionally active RNA polymerase II (Pol II) in mitosis. Here, we demonstrate that chromatin-bound cohesin is necessary to retain elongating Pol II at centromeres. We find that WAPL-mediated removal of cohesin from chromosome arms during prophase is required for the dissociation of Pol II and nascent transcripts, and failure of this process dramatically alters mitotic gene expression. Removal of cohesin/Pol II from chromosome arms in prophase is important for accurate chromosome segregation and normal activation of gene expression in G1. We propose that prophase cohesin removal is a key step in reprogramming gene expression as cells transition from G2 through mitosis to G1. 2021-10-27T20:34:22Z 2021-10-27T20:34:22Z 2020 2021-07-14T17:31:48Z Article http://purl.org/eprint/type/JournalArticle https://hdl.handle.net/1721.1/136229 en 10.1016/J.MOLCEL.2020.01.023 Molecular Cell Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/ application/pdf Elsevier BV PMC |
spellingShingle | Perea-Resa, Carlos Bury, Leah Cheeseman, Iain M Blower, Michael D Cohesin Removal Reprograms Gene Expression upon Mitotic Entry |
title | Cohesin Removal Reprograms Gene Expression upon Mitotic Entry |
title_full | Cohesin Removal Reprograms Gene Expression upon Mitotic Entry |
title_fullStr | Cohesin Removal Reprograms Gene Expression upon Mitotic Entry |
title_full_unstemmed | Cohesin Removal Reprograms Gene Expression upon Mitotic Entry |
title_short | Cohesin Removal Reprograms Gene Expression upon Mitotic Entry |
title_sort | cohesin removal reprograms gene expression upon mitotic entry |
url | https://hdl.handle.net/1721.1/136229 |
work_keys_str_mv | AT perearesacarlos cohesinremovalreprogramsgeneexpressionuponmitoticentry AT buryleah cohesinremovalreprogramsgeneexpressionuponmitoticentry AT cheesemaniainm cohesinremovalreprogramsgeneexpressionuponmitoticentry AT blowermichaeld cohesinremovalreprogramsgeneexpressionuponmitoticentry |