Magnetic field-dependent low-energy magnon dynamics in α – RuCl 3

© 2019 American Physical Society. Revealing the spin excitations of complex quantum magnets is key to developing a minimal model that explains the underlying magnetic correlations in the ground state. We investigate the low-energy magnons in α-RuCl3 by combining time-domain terahertz spectroscopy un...

Full description

Bibliographic Details
Main Authors: Ozel, Ilkem Ozge, Belvin, Carina A, Baldini, Edoardo, Kimchi, Itamar, Do, Seunghwan, Choi, Kwang-Yong, Gedik, Nuh
Other Authors: Massachusetts Institute of Technology. Department of Physics
Format: Article
Language:English
Published: American Physical Society (APS) 2021
Online Access:https://hdl.handle.net/1721.1/136389
Description
Summary:© 2019 American Physical Society. Revealing the spin excitations of complex quantum magnets is key to developing a minimal model that explains the underlying magnetic correlations in the ground state. We investigate the low-energy magnons in α-RuCl3 by combining time-domain terahertz spectroscopy under an external magnetic field and model Hamiltonian calculations. We observe two absorption peaks around 2.0 and 2.4 meV, which we attribute to zone-center spin waves. Using linear spin-wave theory with only nearest-neighbor terms of the exchange couplings, we calculate the antiferromagnetic resonance frequencies and reveal their dependence on an external field applied parallel to the nearest-neighbor Ru-Ru bonds. We find that the magnon behavior in an applied magnetic field can be understood only by including an off-diagonal Γ exchange term to the minimal Heisenberg-Kitaev model. Such an anisotropic exchange interaction that manifests itself as a result of strong spin-orbit coupling can naturally account for the observed mixing of the modes at higher fields strengths.