Semantic photo manipulation with a generative image prior
© 2019 Association for Computing Machinery. All rights reserved. Despite the recent success of GANs in synthesizing images conditioned on inputs such as a user sketch, text, or semantic labels, manipulating the highlevel attributes of an existing natural photograph with GANs is challenging for two r...
Principais autores: | Bau, David, Strobelt, Hendrik, Peebles, William, Wulff, Jonas, Zhou, Bolei, Zhu, Jun-Yan, Torralba, Antonio |
---|---|
Outros Autores: | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science |
Formato: | Artigo |
Idioma: | English |
Publicado em: |
Association for Computing Machinery (ACM)
2021
|
Acesso em linha: | https://hdl.handle.net/1721.1/136406 |
Registros relacionados
-
Seeing What a GAN Cannot Generate
por: Bau, David, et al.
Publicado em: (2021) -
Understanding the role of individual units in a deep neural network
por: Bau, David, et al.
Publicado em: (2021) -
The Hessian Penalty: A Weak Prior for Unsupervised Disentanglement
por: Peebles, William, et al.
Publicado em: (2021) -
Semantic prior guided fine-grained facial expression manipulation
por: Tao Xue, et al.
Publicado em: (2024-03-01) -
Diverse Image Generation via Self-Conditioned GANs
por: Liu, Steven, et al.
Publicado em: (2021)