Global inverse kinematics via mixed-integer convex optimization
<jats:p>In this paper, we present a novel formulation of the inverse kinematics (IK) problem with generic constraints as a mixed-integer convex optimization program. The proposed approach can solve the IK problem globally with generic task space constraints: a major improvement over existing a...
Main Authors: | Dai, Hongkai, Izatt, Gregory, Tedrake, Russ |
---|---|
其他作者: | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory |
格式: | 文件 |
语言: | English |
出版: |
SAGE Publications
2021
|
在线阅读: | https://hdl.handle.net/1721.1/136519 |
相似书籍
-
Globally Optimal Object Pose Estimation in Point Clouds with Mixed-Integer Programming
由: Izatt, Gregory R., et al.
出版: (2021) -
Footstep planning on uneven terrain with mixed-integer convex optimization
由: Deits, Robin Lloyd Henderson, et al.
出版: (2016) -
Planning robust walking motion on uneven terrain via convex optimization
由: Dai, Hongkai, et al.
出版: (2020) -
Polyhedral approximation in mixed-integer convex optimization
由: Yamangil, Emre, et al.
出版: (2018) -
Mixed-Integer Convex Representability
由: Lubin, Miles C, et al.
出版: (2019)