Rapid Generation of Fully Relativistic Extreme-Mass-Ratio-Inspiral Waveform Templates for LISA Data Analysis
The future space mission LISA will observe a wealth of gravitational-wave sources at millihertz frequencies. Of these, the extreme-mass-ratio inspirals of compact objects into massive black holes are the only sources that combine the challenges of strong-field complexity with that of long-lived sign...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Physical Society
2021
|
Online Access: | https://hdl.handle.net/1721.1/136706 |
_version_ | 1811093638262816768 |
---|---|
author | Chua, Alvin J. K. Katz, Michael L. Warburton, Niels Hughes, Scott A. |
author_facet | Chua, Alvin J. K. Katz, Michael L. Warburton, Niels Hughes, Scott A. |
author_sort | Chua, Alvin J. K. |
collection | MIT |
description | The future space mission LISA will observe a wealth of gravitational-wave sources at millihertz frequencies. Of these, the extreme-mass-ratio inspirals of compact objects into massive black holes are the only sources that combine the challenges of strong-field complexity with that of long-lived signals. Such signals are found and characterized by comparing them against a large number of accurate waveform templates during data analysis, but the rapid generation of templates is hindered by computing the ∼10^{3}–10^{5} harmonic modes in a fully relativistic waveform. We use order-reduction and deep-learning techniques to derive a global fit for the ≈4000 modes in the special case of an eccentric Schwarzschild orbit, and implement the fit in a complete waveform framework with hardware acceleration. Our high-fidelity waveforms can be generated in under 1 s, and achieve a mismatch of ≲5×10^{-4} against reference waveforms that take ≳10^{4} times longer. This marks the first time that analysis-length waveforms with full harmonic content can be produced on timescales useful for direct implementation in LISA analysis algorithms. |
first_indexed | 2024-09-23T15:48:17Z |
format | Article |
id | mit-1721.1/136706 |
institution | Massachusetts Institute of Technology |
language | English |
last_indexed | 2024-09-23T15:48:17Z |
publishDate | 2021 |
publisher | American Physical Society |
record_format | dspace |
spelling | mit-1721.1/1367062021-11-01T14:36:57Z Rapid Generation of Fully Relativistic Extreme-Mass-Ratio-Inspiral Waveform Templates for LISA Data Analysis Chua, Alvin J. K. Katz, Michael L. Warburton, Niels Hughes, Scott A. The future space mission LISA will observe a wealth of gravitational-wave sources at millihertz frequencies. Of these, the extreme-mass-ratio inspirals of compact objects into massive black holes are the only sources that combine the challenges of strong-field complexity with that of long-lived signals. Such signals are found and characterized by comparing them against a large number of accurate waveform templates during data analysis, but the rapid generation of templates is hindered by computing the ∼10^{3}–10^{5} harmonic modes in a fully relativistic waveform. We use order-reduction and deep-learning techniques to derive a global fit for the ≈4000 modes in the special case of an eccentric Schwarzschild orbit, and implement the fit in a complete waveform framework with hardware acceleration. Our high-fidelity waveforms can be generated in under 1 s, and achieve a mismatch of ≲5×10^{-4} against reference waveforms that take ≳10^{4} times longer. This marks the first time that analysis-length waveforms with full harmonic content can be produced on timescales useful for direct implementation in LISA analysis algorithms. 2021-10-28T14:45:28Z 2021-10-28T14:45:28Z 2021-02-04 2021-02-10T23:36:00Z Article http://purl.org/eprint/type/JournalArticle https://hdl.handle.net/1721.1/136706 Phys. Rev. Lett. 126, 051102 (2021) PUBLISHER_POLICY en http://dx.doi.org/10.1103/PhysRevLett.126.051102 Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. American Physical Society application/pdf American Physical Society American Physical Society |
spellingShingle | Chua, Alvin J. K. Katz, Michael L. Warburton, Niels Hughes, Scott A. Rapid Generation of Fully Relativistic Extreme-Mass-Ratio-Inspiral Waveform Templates for LISA Data Analysis |
title | Rapid Generation of Fully Relativistic Extreme-Mass-Ratio-Inspiral Waveform Templates for LISA Data Analysis |
title_full | Rapid Generation of Fully Relativistic Extreme-Mass-Ratio-Inspiral Waveform Templates for LISA Data Analysis |
title_fullStr | Rapid Generation of Fully Relativistic Extreme-Mass-Ratio-Inspiral Waveform Templates for LISA Data Analysis |
title_full_unstemmed | Rapid Generation of Fully Relativistic Extreme-Mass-Ratio-Inspiral Waveform Templates for LISA Data Analysis |
title_short | Rapid Generation of Fully Relativistic Extreme-Mass-Ratio-Inspiral Waveform Templates for LISA Data Analysis |
title_sort | rapid generation of fully relativistic extreme mass ratio inspiral waveform templates for lisa data analysis |
url | https://hdl.handle.net/1721.1/136706 |
work_keys_str_mv | AT chuaalvinjk rapidgenerationoffullyrelativisticextrememassratioinspiralwaveformtemplatesforlisadataanalysis AT katzmichaell rapidgenerationoffullyrelativisticextrememassratioinspiralwaveformtemplatesforlisadataanalysis AT warburtonniels rapidgenerationoffullyrelativisticextrememassratioinspiralwaveformtemplatesforlisadataanalysis AT hughesscotta rapidgenerationoffullyrelativisticextrememassratioinspiralwaveformtemplatesforlisadataanalysis |