Integrable triples in semisimple Lie algebras

Abstract We classify all integrable triples in simple Lie algebras, up to equivalence. The importance of this problem stems from the fact that for each such equivalence class one can construct the corresponding integrable hierarchy of bi-Hamiltonian PDE. The simplest integrable triple...

Full description

Bibliographic Details
Main Authors: De Sole, Alberto, Jibladze, Mamuka, Kac, Victor G., Valeri, Daniele
Other Authors: Massachusetts Institute of Technology. Department of Mathematics
Format: Article
Language:English
Published: Springer Netherlands 2021
Online Access:https://hdl.handle.net/1721.1/136755
_version_ 1811083638629990400
author De Sole, Alberto
Jibladze, Mamuka
Kac, Victor G.
Valeri, Daniele
author2 Massachusetts Institute of Technology. Department of Mathematics
author_facet Massachusetts Institute of Technology. Department of Mathematics
De Sole, Alberto
Jibladze, Mamuka
Kac, Victor G.
Valeri, Daniele
author_sort De Sole, Alberto
collection MIT
description Abstract We classify all integrable triples in simple Lie algebras, up to equivalence. The importance of this problem stems from the fact that for each such equivalence class one can construct the corresponding integrable hierarchy of bi-Hamiltonian PDE. The simplest integrable triple (f, 0, e) in $${\mathfrak {sl}}_2$$ sl 2 corresponds to the KdV hierarchy, and the triple $$(f,0,e_\theta )$$ ( f , 0 , e θ ) , where f is the sum of negative simple root vectors and $$e_\theta $$ e θ is the highest root vector of a simple Lie algebra, corresponds to the Drinfeld–Sokolov hierarchy.
first_indexed 2024-09-23T12:36:22Z
format Article
id mit-1721.1/136755
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T12:36:22Z
publishDate 2021
publisher Springer Netherlands
record_format dspace
spelling mit-1721.1/1367552023-12-06T21:54:13Z Integrable triples in semisimple Lie algebras De Sole, Alberto Jibladze, Mamuka Kac, Victor G. Valeri, Daniele Massachusetts Institute of Technology. Department of Mathematics Abstract We classify all integrable triples in simple Lie algebras, up to equivalence. The importance of this problem stems from the fact that for each such equivalence class one can construct the corresponding integrable hierarchy of bi-Hamiltonian PDE. The simplest integrable triple (f, 0, e) in $${\mathfrak {sl}}_2$$ sl 2 corresponds to the KdV hierarchy, and the triple $$(f,0,e_\theta )$$ ( f , 0 , e θ ) , where f is the sum of negative simple root vectors and $$e_\theta $$ e θ is the highest root vector of a simple Lie algebra, corresponds to the Drinfeld–Sokolov hierarchy. 2021-10-29T18:51:46Z 2021-10-29T18:51:46Z 2021-09-09 2021-09-12T03:08:23Z Article http://purl.org/eprint/type/JournalArticle https://hdl.handle.net/1721.1/136755 Letters in Mathematical Physics. 2021 Sep 09;111(5):117 PUBLISHER_CC en https://doi.org/10.1007/s11005-021-01456-4 Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/ The Author(s) application/pdf Springer Netherlands Springer Netherlands
spellingShingle De Sole, Alberto
Jibladze, Mamuka
Kac, Victor G.
Valeri, Daniele
Integrable triples in semisimple Lie algebras
title Integrable triples in semisimple Lie algebras
title_full Integrable triples in semisimple Lie algebras
title_fullStr Integrable triples in semisimple Lie algebras
title_full_unstemmed Integrable triples in semisimple Lie algebras
title_short Integrable triples in semisimple Lie algebras
title_sort integrable triples in semisimple lie algebras
url https://hdl.handle.net/1721.1/136755
work_keys_str_mv AT desolealberto integrabletriplesinsemisimpleliealgebras
AT jibladzemamuka integrabletriplesinsemisimpleliealgebras
AT kacvictorg integrabletriplesinsemisimpleliealgebras
AT valeridaniele integrabletriplesinsemisimpleliealgebras