Alleviating label switching with optimal transport
© 2019 Neural information processing systems foundation. All rights reserved. Label switching is a phenomenon arising in mixture model posterior inference that prevents one from meaningfully assessing posterior statistics using standard Monte Carlo procedures. This issue arises due to invariance of...
Autores principales: | Monteiller, Pierre, Claici, Sebastian, Chien, Edward, Mirzazadeh, Farzaneh, Solomon, Justin, Yurochkin, Mikhail |
---|---|
Otros Autores: | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory |
Formato: | Artículo |
Lenguaje: | English |
Publicado: |
2022
|
Acceso en línea: | https://hdl.handle.net/1721.1/137353.2 |
Ejemplares similares
-
Hierarchical optimal transport for document representation
por: Yurochkin, Mikhail, et al.
Publicado: (2022) -
Alleviating label switching with optimal transport
Publicado: (2021) -
Stochastic wasserstein barycenters
por: Solomon, Justin, et al.
Publicado: (2021) -
Structure as simplification : transportation tools for understanding data
por: Claici, Sebastian.
Publicado: (2020) -
Parallel Streaming Wasserstein Barycenters
por: Staib, Matthew, et al.
Publicado: (2021)