Zero-Knowledge Proofs of Proximity

© Itay Berman, Ron D. Rothblum and Vinod Vaikuntanathan. Interactive proofs of proximity (IPPs) are interactive proofs in which the verifier runs in time sub-linear in the input length. Since the verifier cannot even read the entire input, following the property testing literature, we only require t...

Full description

Bibliographic Details
Main Authors: Berman, Itay, Rothblum, Ron D., Vaikuntananthan, Vinod
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Format: Article
Language:English
Published: 2021
Online Access:https://hdl.handle.net/1721.1/137815
_version_ 1811088156394520576
author Berman, Itay
Rothblum, Ron D.
Vaikuntananthan, Vinod
author2 Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
author_facet Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Berman, Itay
Rothblum, Ron D.
Vaikuntananthan, Vinod
author_sort Berman, Itay
collection MIT
description © Itay Berman, Ron D. Rothblum and Vinod Vaikuntanathan. Interactive proofs of proximity (IPPs) are interactive proofs in which the verifier runs in time sub-linear in the input length. Since the verifier cannot even read the entire input, following the property testing literature, we only require that the verifier reject inputs that are far from the language (and, as usual, accept inputs that are in the language). In this work, we initiate the study of zero-knowledge proofs of proximity (ZKPP). A ZKPP convinces a sub-linear time verifier that the input is close to the language (similarly to an IPP) while simultaneously guaranteeing a natural zero-knowledge property. Specifically, the verifier learns nothing beyond (1) the fact that the input is in the language, and (2) what it could additionally infer by reading a few bits of the input. Our main focus is the setting of statistical zero-knowledge where we show that the following hold unconditionally (where N denotes the input length): Statistical ZKPPs can be sub-exponentially more efficient than property testers (or even non-interactive IPPs): We show a natural property which has a statistical ZKPP with a polylog(N) time verifier, but requires (N) queries (and hence also runtime) for every property tester. Statistical ZKPPs can be sub-exponentially less efficient than IPPs: We show a property which has an IPP with a polylog(N) time verifier, but cannot have a statistical ZKPP with even an No(1) time verifier. Statistical ZKPPs for some graph-based properties such as promise versions of expansion and bipartiteness, in the bounded degree graph model, with polylog(N) time verifiers exist. Lastly, we also consider the computational setting where we show that: Assuming the existence of one-way functions, every language computable either in (logspace uniform) NC or in SC, has a computational ZKPP with a (roughly) N time verifier. Assuming the existence of collision-resistant hash functions, every language in NP has a statistical zero-knowledge argument of proximity with a polylog(N) time verifier.
first_indexed 2024-09-23T13:57:09Z
format Article
id mit-1721.1/137815
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T13:57:09Z
publishDate 2021
record_format dspace
spelling mit-1721.1/1378152023-04-10T19:14:12Z Zero-Knowledge Proofs of Proximity Berman, Itay Rothblum, Ron D. Vaikuntananthan, Vinod Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science © Itay Berman, Ron D. Rothblum and Vinod Vaikuntanathan. Interactive proofs of proximity (IPPs) are interactive proofs in which the verifier runs in time sub-linear in the input length. Since the verifier cannot even read the entire input, following the property testing literature, we only require that the verifier reject inputs that are far from the language (and, as usual, accept inputs that are in the language). In this work, we initiate the study of zero-knowledge proofs of proximity (ZKPP). A ZKPP convinces a sub-linear time verifier that the input is close to the language (similarly to an IPP) while simultaneously guaranteeing a natural zero-knowledge property. Specifically, the verifier learns nothing beyond (1) the fact that the input is in the language, and (2) what it could additionally infer by reading a few bits of the input. Our main focus is the setting of statistical zero-knowledge where we show that the following hold unconditionally (where N denotes the input length): Statistical ZKPPs can be sub-exponentially more efficient than property testers (or even non-interactive IPPs): We show a natural property which has a statistical ZKPP with a polylog(N) time verifier, but requires (N) queries (and hence also runtime) for every property tester. Statistical ZKPPs can be sub-exponentially less efficient than IPPs: We show a property which has an IPP with a polylog(N) time verifier, but cannot have a statistical ZKPP with even an No(1) time verifier. Statistical ZKPPs for some graph-based properties such as promise versions of expansion and bipartiteness, in the bounded degree graph model, with polylog(N) time verifiers exist. Lastly, we also consider the computational setting where we show that: Assuming the existence of one-way functions, every language computable either in (logspace uniform) NC or in SC, has a computational ZKPP with a (roughly) N time verifier. Assuming the existence of collision-resistant hash functions, every language in NP has a statistical zero-knowledge argument of proximity with a polylog(N) time verifier. 2021-11-08T20:18:12Z 2021-11-08T20:18:12Z 2018 2019-07-09T17:01:20Z Article http://purl.org/eprint/type/ConferencePaper https://hdl.handle.net/1721.1/137815 Berman, Itay, Rothblum, Ron D. and Vaikuntananthan, Vinod. 2018. "Zero-Knowledge Proofs of Proximity." en 10.4230/LIPIcs.ITCS.2018.19 Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/ application/pdf DROPS
spellingShingle Berman, Itay
Rothblum, Ron D.
Vaikuntananthan, Vinod
Zero-Knowledge Proofs of Proximity
title Zero-Knowledge Proofs of Proximity
title_full Zero-Knowledge Proofs of Proximity
title_fullStr Zero-Knowledge Proofs of Proximity
title_full_unstemmed Zero-Knowledge Proofs of Proximity
title_short Zero-Knowledge Proofs of Proximity
title_sort zero knowledge proofs of proximity
url https://hdl.handle.net/1721.1/137815
work_keys_str_mv AT bermanitay zeroknowledgeproofsofproximity
AT rothblumrond zeroknowledgeproofsofproximity
AT vaikuntananthanvinod zeroknowledgeproofsofproximity