QuaSI: Quantile Sparse Image Prior for Spatio-Temporal Denoising of Retinal OCT Data
© Springer International Publishing AG 2017. Optical coherence tomography (OCT) enables high-resolution and non-invasive 3D imaging of the human retina but is inherently impaired by speckle noise. This paper introduces a spatio-temporal denoising algorithm for OCT data on a B-scan level using a nove...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Springer International Publishing
2021
|
Online Access: | https://hdl.handle.net/1721.1/137948 |
_version_ | 1826217484337807360 |
---|---|
author | Schirrmacher, Franziska Köhler, Thomas Husvogt, Lennart Fujimoto, James G. Hornegger, Joachim Maier, Andreas K. |
author_facet | Schirrmacher, Franziska Köhler, Thomas Husvogt, Lennart Fujimoto, James G. Hornegger, Joachim Maier, Andreas K. |
author_sort | Schirrmacher, Franziska |
collection | MIT |
description | © Springer International Publishing AG 2017. Optical coherence tomography (OCT) enables high-resolution and non-invasive 3D imaging of the human retina but is inherently impaired by speckle noise. This paper introduces a spatio-temporal denoising algorithm for OCT data on a B-scan level using a novel quantile sparse image (QuaSI) prior. To remove speckle noise while preserving image structures of diagnostic relevance, we implement our QuaSI prior via median filter regularization coupled with a Huber data fidelity model in a variational approach. For efficient energy minimization, we develop an alternating direction method of multipliers (ADMM) scheme using a linearization of median filtering. Our spatio-temporal method can handle both, denoising of single B-scans and temporally consecutive B-scans, to gain volumetric OCT data with enhanced signal-to-noise ratio. Our algorithm based on 4 B-scans only achieved comparable performance to averaging 13 B-scans and outperformed other current denoising methods. |
first_indexed | 2024-09-23T17:04:23Z |
format | Article |
id | mit-1721.1/137948 |
institution | Massachusetts Institute of Technology |
language | English |
last_indexed | 2024-09-23T17:04:23Z |
publishDate | 2021 |
publisher | Springer International Publishing |
record_format | dspace |
spelling | mit-1721.1/1379482021-11-10T03:01:05Z QuaSI: Quantile Sparse Image Prior for Spatio-Temporal Denoising of Retinal OCT Data Schirrmacher, Franziska Köhler, Thomas Husvogt, Lennart Fujimoto, James G. Hornegger, Joachim Maier, Andreas K. © Springer International Publishing AG 2017. Optical coherence tomography (OCT) enables high-resolution and non-invasive 3D imaging of the human retina but is inherently impaired by speckle noise. This paper introduces a spatio-temporal denoising algorithm for OCT data on a B-scan level using a novel quantile sparse image (QuaSI) prior. To remove speckle noise while preserving image structures of diagnostic relevance, we implement our QuaSI prior via median filter regularization coupled with a Huber data fidelity model in a variational approach. For efficient energy minimization, we develop an alternating direction method of multipliers (ADMM) scheme using a linearization of median filtering. Our spatio-temporal method can handle both, denoising of single B-scans and temporally consecutive B-scans, to gain volumetric OCT data with enhanced signal-to-noise ratio. Our algorithm based on 4 B-scans only achieved comparable performance to averaging 13 B-scans and outperformed other current denoising methods. 2021-11-09T16:10:19Z 2021-11-09T16:10:19Z 2017 2019-06-26T15:53:02Z Article http://purl.org/eprint/type/ConferencePaper 0302-9743 1611-3349 https://hdl.handle.net/1721.1/137948 Schirrmacher, Franziska, Köhler, Thomas, Husvogt, Lennart, Fujimoto, James G., Hornegger, Joachim et al. 2017. "QuaSI: Quantile Sparse Image Prior for Spatio-Temporal Denoising of Retinal OCT Data." en 10.1007/978-3-319-66185-8_10 Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf Springer International Publishing arXiv |
spellingShingle | Schirrmacher, Franziska Köhler, Thomas Husvogt, Lennart Fujimoto, James G. Hornegger, Joachim Maier, Andreas K. QuaSI: Quantile Sparse Image Prior for Spatio-Temporal Denoising of Retinal OCT Data |
title | QuaSI: Quantile Sparse Image Prior for Spatio-Temporal Denoising of Retinal OCT Data |
title_full | QuaSI: Quantile Sparse Image Prior for Spatio-Temporal Denoising of Retinal OCT Data |
title_fullStr | QuaSI: Quantile Sparse Image Prior for Spatio-Temporal Denoising of Retinal OCT Data |
title_full_unstemmed | QuaSI: Quantile Sparse Image Prior for Spatio-Temporal Denoising of Retinal OCT Data |
title_short | QuaSI: Quantile Sparse Image Prior for Spatio-Temporal Denoising of Retinal OCT Data |
title_sort | quasi quantile sparse image prior for spatio temporal denoising of retinal oct data |
url | https://hdl.handle.net/1721.1/137948 |
work_keys_str_mv | AT schirrmacherfranziska quasiquantilesparseimagepriorforspatiotemporaldenoisingofretinaloctdata AT kohlerthomas quasiquantilesparseimagepriorforspatiotemporaldenoisingofretinaloctdata AT husvogtlennart quasiquantilesparseimagepriorforspatiotemporaldenoisingofretinaloctdata AT fujimotojamesg quasiquantilesparseimagepriorforspatiotemporaldenoisingofretinaloctdata AT horneggerjoachim quasiquantilesparseimagepriorforspatiotemporaldenoisingofretinaloctdata AT maierandreask quasiquantilesparseimagepriorforspatiotemporaldenoisingofretinaloctdata |