Maze Made Easy: Better and easier measurement of incremental processing difficulty
© 2019 Elsevier Inc. Behavioral measures of incremental language comprehension difficulty form a crucial part of the empirical basis of psycholinguistics. The two most common methods for obtaining these measures have significant limitations: eye tracking studies are resource-intensive, and self-pace...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
Elsevier BV
2021
|
Online Access: | https://hdl.handle.net/1721.1/138282 |
Summary: | © 2019 Elsevier Inc. Behavioral measures of incremental language comprehension difficulty form a crucial part of the empirical basis of psycholinguistics. The two most common methods for obtaining these measures have significant limitations: eye tracking studies are resource-intensive, and self-paced reading can yield noisy data with poor localization. These limitations are even more severe for web-based crowdsourcing studies, where eye tracking is infeasible and self-paced reading is vulnerable to inattentive participants. Here we make a case for broader adoption of the Maze task, involving sequential forced choice between each successive word in a sentence and a contextually inappropriate distractor. We leverage natural language processing technology to automate the most researcher-laborious part of Maze – generating distractor materials – and show that the resulting A(uto)-Maze method has dramatically superior statistical power and localization for well-established syntactic ambiguity resolution phenomena. We make our code freely available online for widespread adoption of A-maze by the psycholinguistics community. |
---|