Skin-electrode iontronic interface for mechanosensing

<jats:title>Abstract</jats:title><jats:p>Electrodermal devices that capture the physiological response of skin are crucial for monitoring vital signals, but they often require convoluted layered designs with either electronic or ionic active materials relying on complicated synthes...

Full description

Bibliographic Details
Main Authors: Zhu, Pang, Du, Huifeng, Hou, Xingyu, Lu, Peng, Wang, Liu, Huang, Jun, Bai, Ningning, Wu, Zhigang, Fang, Nicholas X, Guo, Chuan Fei
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering
Format: Article
Language:English
Published: Springer Science and Business Media LLC 2021
Online Access:https://hdl.handle.net/1721.1/138720
Description
Summary:<jats:title>Abstract</jats:title><jats:p>Electrodermal devices that capture the physiological response of skin are crucial for monitoring vital signals, but they often require convoluted layered designs with either electronic or ionic active materials relying on complicated synthesis procedures, encapsulation, and packaging techniques. Here, we report that the ionic transport in living systems can provide a simple mode of iontronic sensing and bypass the need of artificial ionic materials. A simple skin-electrode mechanosensing structure (SEMS) is constructed, exhibiting high pressure-resolution and spatial-resolution, being capable of feeling touch and detecting weak physiological signals such as fingertip pulse under different skin humidity. Our mechanical analysis reveals the critical role of instability in high-aspect-ratio microstructures on sensing. We further demonstrate pressure mapping with millimeter-spatial-resolution using a fully textile SEMS-based glove. The simplicity and reliability of SEMS hold great promise of diverse healthcare applications, such as pulse detection and recovering the sensory capability in patients with tactile dysfunction.</jats:p>