Model Compression and AutoML for Efficient Click-Through Rate Prediction

Novel machine learning architectures can adeptly learn to predict user response for recommender systems. However, these model architectures are often effective at the cost of large computational, and memory, cost. This limits their ability to run on edge devices with smaller hardwares, such as smart...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Gschwind, Katharina
Άλλοι συγγραφείς: Han, Song
Μορφή: Thesis
Έκδοση: Massachusetts Institute of Technology 2022
Διαθέσιμο Online:https://hdl.handle.net/1721.1/139253

Παρόμοια τεκμήρια