Model Compression and AutoML for Efficient Click-Through Rate Prediction
Novel machine learning architectures can adeptly learn to predict user response for recommender systems. However, these model architectures are often effective at the cost of large computational, and memory, cost. This limits their ability to run on edge devices with smaller hardwares, such as smart...
Κύριος συγγραφέας: | Gschwind, Katharina |
---|---|
Άλλοι συγγραφείς: | Han, Song |
Μορφή: | Thesis |
Έκδοση: |
Massachusetts Institute of Technology
2022
|
Διαθέσιμο Online: | https://hdl.handle.net/1721.1/139253 |
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
AMC: AutoML for Model Compression and Acceleration on Mobile Devices
ανά: Lin, Ji, κ.ά.
Έκδοση: (2021) -
FRAMED: An AutoML Approach for Structural Performance Prediction of Bicycle Frames
ανά: Regenwetter, Lyle, κ.ά.
Έκδοση: (2023) -
AutoML Approach to Stock Keeping Units Segmentation
ανά: Jackson, Ilya
Έκδοση: (2022) -
Hardware-Centric AutoML for Mixed-Precision Quantization
ανά: Wang, Kuan, κ.ά.
Έκδοση: (2021) -
Doing more with less: characterizing dataset downsampling for AutoML
ανά: Zogaj, Fatjon, κ.ά.
Έκδοση: (2022)