Using Machine Learning to Identify Important Parameters for Flow-Induced Vibration
Copyright © 2020 ASME. Vortex-induced vibration (VIV) of long flexible cylinders in deep water involves a large number of physical variables, such as Strouhal number, Reynolds number, mass ratio, damping parameter etc. Among all the variables, it is essential to identify the most important parameter...
Auteurs principaux: | Ma, Leixin, Resvanis, Themistocles L, Vandiver, J Kim |
---|---|
Autres auteurs: | Massachusetts Institute of Technology. Department of Mechanical Engineering |
Format: | Article |
Langue: | English |
Publié: |
ASME International
2022
|
Accès en ligne: | https://hdl.handle.net/1721.1/139743 |
Documents similaires
-
A weighted sparse-input neural network technique applied to identify important features for vortex-induced vibration
par: Ma, Leixin, et autres
Publié: (2022) -
A weighted sparse-input neural network technique applied to identify important features for vortex-induced vibration
par: Ma, Leixin, et autres
Publié: (2021) -
Understanding the higher harmonics of vortex-induced vibration response using a trend-constrained, machine learning approach
par: Ma, Leixin, et autres
Publié: (2024) -
The influence of mode dominance and traveling waves on flexible cylinder flow-induced vibration
par: Ma, Leixin, et autres
Publié: (2024) -
Enhancing Machine Learning Models With Prior Physical Knowledge to Aid in VIV Response Prediction
par: Ma, Leixin, et autres
Publié: (2022)