Strategies towards enabling lithium metal in batteries: interphases and electrodes

Despite the continuous increase in capacity, lithium-ion intercalation batteries are approaching their performance limits. As a result, research is intensifying on next-generation battery technologies. The use of a lithium metal anode promises the highest theoretical energy density and enables use o...

Full description

Bibliographic Details
Main Authors: Horstmann, Birger, Shi, Jiayan, Amine, Rachid, Werres, Martin, He, Xin, Jia, Hao, Hausen, Florian, Cekic-Laskovic, Isidora, Wiemers-Meyer, Simon, Lopez, Jeffrey, Galvez-Aranda, Diego, Baakes, Florian, Bresser, Dominic, Su, Chi-Cheung, Xu, Yaobin, Xu, Wu, Jakes, Peter, Eichel, Rüdiger-A, Figgemeier, Egbert, Krewer, Ulrike, Seminario, Jorge M, Balbuena, Perla B, Wang, Chongmin, Passerini, Stefano, Shao-Horn, Yang, Winter, Martin, Amine, Khalil, Kostecki, Robert, Latz, Arnulf
Other Authors: Massachusetts Institute of Technology. Research Laboratory of Electronics
Format: Article
Language:English
Published: Royal Society of Chemistry (RSC) 2022
Online Access:https://hdl.handle.net/1721.1/139777
_version_ 1826208601574735872
author Horstmann, Birger
Shi, Jiayan
Amine, Rachid
Werres, Martin
He, Xin
Jia, Hao
Hausen, Florian
Cekic-Laskovic, Isidora
Wiemers-Meyer, Simon
Lopez, Jeffrey
Galvez-Aranda, Diego
Baakes, Florian
Bresser, Dominic
Su, Chi-Cheung
Xu, Yaobin
Xu, Wu
Jakes, Peter
Eichel, Rüdiger-A
Figgemeier, Egbert
Krewer, Ulrike
Seminario, Jorge M
Balbuena, Perla B
Wang, Chongmin
Passerini, Stefano
Shao-Horn, Yang
Winter, Martin
Amine, Khalil
Kostecki, Robert
Latz, Arnulf
author2 Massachusetts Institute of Technology. Research Laboratory of Electronics
author_facet Massachusetts Institute of Technology. Research Laboratory of Electronics
Horstmann, Birger
Shi, Jiayan
Amine, Rachid
Werres, Martin
He, Xin
Jia, Hao
Hausen, Florian
Cekic-Laskovic, Isidora
Wiemers-Meyer, Simon
Lopez, Jeffrey
Galvez-Aranda, Diego
Baakes, Florian
Bresser, Dominic
Su, Chi-Cheung
Xu, Yaobin
Xu, Wu
Jakes, Peter
Eichel, Rüdiger-A
Figgemeier, Egbert
Krewer, Ulrike
Seminario, Jorge M
Balbuena, Perla B
Wang, Chongmin
Passerini, Stefano
Shao-Horn, Yang
Winter, Martin
Amine, Khalil
Kostecki, Robert
Latz, Arnulf
author_sort Horstmann, Birger
collection MIT
description Despite the continuous increase in capacity, lithium-ion intercalation batteries are approaching their performance limits. As a result, research is intensifying on next-generation battery technologies. The use of a lithium metal anode promises the highest theoretical energy density and enables use of lithium-free or novel high-energy cathodes. However, the lithium metal anode suffers from poor morphological stability and Coulombic efficiency during cycling, especially in liquid electrolytes. In contrast to solid electrolytes, liquid electrolytes have the advantage of high ionic conductivity and good wetting of the anode, despite the lithium metal volume change during cycling. Rapid capacity fade due to inhomogeneous deposition and dissolution of lithium is the main hindrance to the successful utilization of the lithium metal anode in combination with liquid electrolytes. In this perspective, we discuss how experimental and theoretical insights can provide possible pathways for reversible cycling of two-dimensional lithium metal. Therefore, we discuss improvements in the understanding of lithium metal nucleation, deposition, and stripping on the nanoscale. As the solid–electrolyte interphase (SEI) plays a key role in the lithium morphology, we discuss how the proper SEI design might allow stable cycling. We highlight recent advances in conventional and (localized) highly concentrated electrolytes in view of their respective SEIs. We also discuss artificial interphases and three-dimensional host frameworks, which show prospects of mitigating morphological instabilities and suppressing large shape change on the electrode level.
first_indexed 2024-09-23T14:08:11Z
format Article
id mit-1721.1/139777
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T14:08:11Z
publishDate 2022
publisher Royal Society of Chemistry (RSC)
record_format dspace
spelling mit-1721.1/1397772023-12-07T14:40:16Z Strategies towards enabling lithium metal in batteries: interphases and electrodes Horstmann, Birger Shi, Jiayan Amine, Rachid Werres, Martin He, Xin Jia, Hao Hausen, Florian Cekic-Laskovic, Isidora Wiemers-Meyer, Simon Lopez, Jeffrey Galvez-Aranda, Diego Baakes, Florian Bresser, Dominic Su, Chi-Cheung Xu, Yaobin Xu, Wu Jakes, Peter Eichel, Rüdiger-A Figgemeier, Egbert Krewer, Ulrike Seminario, Jorge M Balbuena, Perla B Wang, Chongmin Passerini, Stefano Shao-Horn, Yang Winter, Martin Amine, Khalil Kostecki, Robert Latz, Arnulf Massachusetts Institute of Technology. Research Laboratory of Electronics Massachusetts Institute of Technology. Department of Mechanical Engineering Massachusetts Institute of Technology. Department of Materials Science and Engineering Despite the continuous increase in capacity, lithium-ion intercalation batteries are approaching their performance limits. As a result, research is intensifying on next-generation battery technologies. The use of a lithium metal anode promises the highest theoretical energy density and enables use of lithium-free or novel high-energy cathodes. However, the lithium metal anode suffers from poor morphological stability and Coulombic efficiency during cycling, especially in liquid electrolytes. In contrast to solid electrolytes, liquid electrolytes have the advantage of high ionic conductivity and good wetting of the anode, despite the lithium metal volume change during cycling. Rapid capacity fade due to inhomogeneous deposition and dissolution of lithium is the main hindrance to the successful utilization of the lithium metal anode in combination with liquid electrolytes. In this perspective, we discuss how experimental and theoretical insights can provide possible pathways for reversible cycling of two-dimensional lithium metal. Therefore, we discuss improvements in the understanding of lithium metal nucleation, deposition, and stripping on the nanoscale. As the solid–electrolyte interphase (SEI) plays a key role in the lithium morphology, we discuss how the proper SEI design might allow stable cycling. We highlight recent advances in conventional and (localized) highly concentrated electrolytes in view of their respective SEIs. We also discuss artificial interphases and three-dimensional host frameworks, which show prospects of mitigating morphological instabilities and suppressing large shape change on the electrode level. 2022-01-27T16:22:05Z 2022-01-27T16:22:05Z 2021 2022-01-27T16:16:16Z Article http://purl.org/eprint/type/JournalArticle https://hdl.handle.net/1721.1/139777 Horstmann, Birger, Shi, Jiayan, Amine, Rachid, Werres, Martin, He, Xin et al. 2021. "Strategies towards enabling lithium metal in batteries: interphases and electrodes." Energy and Environmental Science, 14 (10). en 10.1039/D1EE00767J Energy and Environmental Science Creative Commons Attribution NonCommercial License 3.0 https://creativecommons.org/licenses/by-nc/3.0/ application/pdf Royal Society of Chemistry (RSC) Royal Society of Chemistry (RSC)
spellingShingle Horstmann, Birger
Shi, Jiayan
Amine, Rachid
Werres, Martin
He, Xin
Jia, Hao
Hausen, Florian
Cekic-Laskovic, Isidora
Wiemers-Meyer, Simon
Lopez, Jeffrey
Galvez-Aranda, Diego
Baakes, Florian
Bresser, Dominic
Su, Chi-Cheung
Xu, Yaobin
Xu, Wu
Jakes, Peter
Eichel, Rüdiger-A
Figgemeier, Egbert
Krewer, Ulrike
Seminario, Jorge M
Balbuena, Perla B
Wang, Chongmin
Passerini, Stefano
Shao-Horn, Yang
Winter, Martin
Amine, Khalil
Kostecki, Robert
Latz, Arnulf
Strategies towards enabling lithium metal in batteries: interphases and electrodes
title Strategies towards enabling lithium metal in batteries: interphases and electrodes
title_full Strategies towards enabling lithium metal in batteries: interphases and electrodes
title_fullStr Strategies towards enabling lithium metal in batteries: interphases and electrodes
title_full_unstemmed Strategies towards enabling lithium metal in batteries: interphases and electrodes
title_short Strategies towards enabling lithium metal in batteries: interphases and electrodes
title_sort strategies towards enabling lithium metal in batteries interphases and electrodes
url https://hdl.handle.net/1721.1/139777
work_keys_str_mv AT horstmannbirger strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes
AT shijiayan strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes
AT aminerachid strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes
AT werresmartin strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes
AT hexin strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes
AT jiahao strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes
AT hausenflorian strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes
AT cekiclaskovicisidora strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes
AT wiemersmeyersimon strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes
AT lopezjeffrey strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes
AT galvezarandadiego strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes
AT baakesflorian strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes
AT bresserdominic strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes
AT suchicheung strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes
AT xuyaobin strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes
AT xuwu strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes
AT jakespeter strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes
AT eichelrudigera strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes
AT figgemeieregbert strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes
AT krewerulrike strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes
AT seminariojorgem strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes
AT balbuenaperlab strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes
AT wangchongmin strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes
AT passerinistefano strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes
AT shaohornyang strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes
AT wintermartin strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes
AT aminekhalil strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes
AT kosteckirobert strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes
AT latzarnulf strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes