Strategies towards enabling lithium metal in batteries: interphases and electrodes
Despite the continuous increase in capacity, lithium-ion intercalation batteries are approaching their performance limits. As a result, research is intensifying on next-generation battery technologies. The use of a lithium metal anode promises the highest theoretical energy density and enables use o...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
Royal Society of Chemistry (RSC)
2022
|
Online Access: | https://hdl.handle.net/1721.1/139777 |
_version_ | 1826208601574735872 |
---|---|
author | Horstmann, Birger Shi, Jiayan Amine, Rachid Werres, Martin He, Xin Jia, Hao Hausen, Florian Cekic-Laskovic, Isidora Wiemers-Meyer, Simon Lopez, Jeffrey Galvez-Aranda, Diego Baakes, Florian Bresser, Dominic Su, Chi-Cheung Xu, Yaobin Xu, Wu Jakes, Peter Eichel, Rüdiger-A Figgemeier, Egbert Krewer, Ulrike Seminario, Jorge M Balbuena, Perla B Wang, Chongmin Passerini, Stefano Shao-Horn, Yang Winter, Martin Amine, Khalil Kostecki, Robert Latz, Arnulf |
author2 | Massachusetts Institute of Technology. Research Laboratory of Electronics |
author_facet | Massachusetts Institute of Technology. Research Laboratory of Electronics Horstmann, Birger Shi, Jiayan Amine, Rachid Werres, Martin He, Xin Jia, Hao Hausen, Florian Cekic-Laskovic, Isidora Wiemers-Meyer, Simon Lopez, Jeffrey Galvez-Aranda, Diego Baakes, Florian Bresser, Dominic Su, Chi-Cheung Xu, Yaobin Xu, Wu Jakes, Peter Eichel, Rüdiger-A Figgemeier, Egbert Krewer, Ulrike Seminario, Jorge M Balbuena, Perla B Wang, Chongmin Passerini, Stefano Shao-Horn, Yang Winter, Martin Amine, Khalil Kostecki, Robert Latz, Arnulf |
author_sort | Horstmann, Birger |
collection | MIT |
description | Despite the continuous increase in capacity, lithium-ion intercalation batteries are approaching their performance limits. As a result, research is intensifying on next-generation battery technologies. The use of a lithium metal anode promises the highest theoretical energy density and enables use of lithium-free or novel high-energy cathodes. However, the lithium metal anode suffers from poor morphological stability and Coulombic efficiency during cycling, especially in liquid electrolytes. In contrast to solid electrolytes, liquid electrolytes have the advantage of high ionic conductivity and good wetting of the anode, despite the lithium metal volume change during cycling. Rapid capacity fade due to inhomogeneous deposition and dissolution of lithium is the main hindrance to the successful utilization of the lithium metal anode in combination with liquid electrolytes. In this perspective, we discuss how experimental and theoretical insights can provide possible pathways for reversible cycling of two-dimensional lithium metal. Therefore, we discuss improvements in the understanding of lithium metal nucleation, deposition, and stripping on the nanoscale. As the solid–electrolyte interphase (SEI) plays a key role in the lithium morphology, we discuss how the proper SEI design might allow stable cycling. We highlight recent advances in conventional and (localized) highly concentrated electrolytes in view of their respective SEIs. We also discuss artificial interphases and three-dimensional host frameworks, which show prospects of mitigating morphological instabilities and suppressing large shape change on the electrode level. |
first_indexed | 2024-09-23T14:08:11Z |
format | Article |
id | mit-1721.1/139777 |
institution | Massachusetts Institute of Technology |
language | English |
last_indexed | 2024-09-23T14:08:11Z |
publishDate | 2022 |
publisher | Royal Society of Chemistry (RSC) |
record_format | dspace |
spelling | mit-1721.1/1397772023-12-07T14:40:16Z Strategies towards enabling lithium metal in batteries: interphases and electrodes Horstmann, Birger Shi, Jiayan Amine, Rachid Werres, Martin He, Xin Jia, Hao Hausen, Florian Cekic-Laskovic, Isidora Wiemers-Meyer, Simon Lopez, Jeffrey Galvez-Aranda, Diego Baakes, Florian Bresser, Dominic Su, Chi-Cheung Xu, Yaobin Xu, Wu Jakes, Peter Eichel, Rüdiger-A Figgemeier, Egbert Krewer, Ulrike Seminario, Jorge M Balbuena, Perla B Wang, Chongmin Passerini, Stefano Shao-Horn, Yang Winter, Martin Amine, Khalil Kostecki, Robert Latz, Arnulf Massachusetts Institute of Technology. Research Laboratory of Electronics Massachusetts Institute of Technology. Department of Mechanical Engineering Massachusetts Institute of Technology. Department of Materials Science and Engineering Despite the continuous increase in capacity, lithium-ion intercalation batteries are approaching their performance limits. As a result, research is intensifying on next-generation battery technologies. The use of a lithium metal anode promises the highest theoretical energy density and enables use of lithium-free or novel high-energy cathodes. However, the lithium metal anode suffers from poor morphological stability and Coulombic efficiency during cycling, especially in liquid electrolytes. In contrast to solid electrolytes, liquid electrolytes have the advantage of high ionic conductivity and good wetting of the anode, despite the lithium metal volume change during cycling. Rapid capacity fade due to inhomogeneous deposition and dissolution of lithium is the main hindrance to the successful utilization of the lithium metal anode in combination with liquid electrolytes. In this perspective, we discuss how experimental and theoretical insights can provide possible pathways for reversible cycling of two-dimensional lithium metal. Therefore, we discuss improvements in the understanding of lithium metal nucleation, deposition, and stripping on the nanoscale. As the solid–electrolyte interphase (SEI) plays a key role in the lithium morphology, we discuss how the proper SEI design might allow stable cycling. We highlight recent advances in conventional and (localized) highly concentrated electrolytes in view of their respective SEIs. We also discuss artificial interphases and three-dimensional host frameworks, which show prospects of mitigating morphological instabilities and suppressing large shape change on the electrode level. 2022-01-27T16:22:05Z 2022-01-27T16:22:05Z 2021 2022-01-27T16:16:16Z Article http://purl.org/eprint/type/JournalArticle https://hdl.handle.net/1721.1/139777 Horstmann, Birger, Shi, Jiayan, Amine, Rachid, Werres, Martin, He, Xin et al. 2021. "Strategies towards enabling lithium metal in batteries: interphases and electrodes." Energy and Environmental Science, 14 (10). en 10.1039/D1EE00767J Energy and Environmental Science Creative Commons Attribution NonCommercial License 3.0 https://creativecommons.org/licenses/by-nc/3.0/ application/pdf Royal Society of Chemistry (RSC) Royal Society of Chemistry (RSC) |
spellingShingle | Horstmann, Birger Shi, Jiayan Amine, Rachid Werres, Martin He, Xin Jia, Hao Hausen, Florian Cekic-Laskovic, Isidora Wiemers-Meyer, Simon Lopez, Jeffrey Galvez-Aranda, Diego Baakes, Florian Bresser, Dominic Su, Chi-Cheung Xu, Yaobin Xu, Wu Jakes, Peter Eichel, Rüdiger-A Figgemeier, Egbert Krewer, Ulrike Seminario, Jorge M Balbuena, Perla B Wang, Chongmin Passerini, Stefano Shao-Horn, Yang Winter, Martin Amine, Khalil Kostecki, Robert Latz, Arnulf Strategies towards enabling lithium metal in batteries: interphases and electrodes |
title | Strategies towards enabling lithium metal in batteries: interphases and electrodes |
title_full | Strategies towards enabling lithium metal in batteries: interphases and electrodes |
title_fullStr | Strategies towards enabling lithium metal in batteries: interphases and electrodes |
title_full_unstemmed | Strategies towards enabling lithium metal in batteries: interphases and electrodes |
title_short | Strategies towards enabling lithium metal in batteries: interphases and electrodes |
title_sort | strategies towards enabling lithium metal in batteries interphases and electrodes |
url | https://hdl.handle.net/1721.1/139777 |
work_keys_str_mv | AT horstmannbirger strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes AT shijiayan strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes AT aminerachid strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes AT werresmartin strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes AT hexin strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes AT jiahao strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes AT hausenflorian strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes AT cekiclaskovicisidora strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes AT wiemersmeyersimon strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes AT lopezjeffrey strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes AT galvezarandadiego strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes AT baakesflorian strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes AT bresserdominic strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes AT suchicheung strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes AT xuyaobin strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes AT xuwu strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes AT jakespeter strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes AT eichelrudigera strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes AT figgemeieregbert strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes AT krewerulrike strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes AT seminariojorgem strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes AT balbuenaperlab strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes AT wangchongmin strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes AT passerinistefano strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes AT shaohornyang strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes AT wintermartin strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes AT aminekhalil strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes AT kosteckirobert strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes AT latzarnulf strategiestowardsenablinglithiummetalinbatteriesinterphasesandelectrodes |