Deep compositional robotic planners that follow natural language commands

We demonstrate how a sampling-based robotic planner can be augmented to learn to understand a sequence of natural language commands in a continuous configuration space to move and manipu- late objects. Our approach combines a deep network structured according to the parse of a complex command that i...

Full description

Bibliographic Details
Main Authors: Kuo, Yen-Ling, Katz, Boris, Barbu, Andrei
Format: Article
Published: Center for Brains, Minds and Machines (CBMM), Computation and Systems Neuroscience (Cosyne) 2022
Online Access:https://hdl.handle.net/1721.1/141354
_version_ 1826196744969388032
author Kuo, Yen-Ling
Katz, Boris
Barbu, Andrei
author_facet Kuo, Yen-Ling
Katz, Boris
Barbu, Andrei
author_sort Kuo, Yen-Ling
collection MIT
description We demonstrate how a sampling-based robotic planner can be augmented to learn to understand a sequence of natural language commands in a continuous configuration space to move and manipu- late objects. Our approach combines a deep network structured according to the parse of a complex command that includes objects, verbs, spatial relations, and attributes, with a sampling-based planner, RRT. A recurrent hierarchical deep network controls how the planner explores the environment, de- termines when a planned path is likely to achieve a goal, and estimates the confidence of each move to trade off exploitation and exploration between the network and the planner. Planners are designed to have near-optimal behavior when information about the task is missing, while networks learn to ex- ploit observations which are available from the environment, making the two naturally complementary. Combining the two enables generalization to new maps, new kinds of obstacles, and more complex sentences that do not occur in the training set. Little data is required to train the model despite it jointly acquiring a CNN that extracts features from the environment as it learns the meanings of words. The model provides a level of interpretability through the use of attention maps allowing users to see its reasoning steps despite being an end-to-end model. This end-to-end model allows robots to learn to follow natural language commands in challenging continuous environments.
first_indexed 2024-09-23T10:37:23Z
format Article
id mit-1721.1/141354
institution Massachusetts Institute of Technology
last_indexed 2024-09-23T10:37:23Z
publishDate 2022
publisher Center for Brains, Minds and Machines (CBMM), Computation and Systems Neuroscience (Cosyne)
record_format dspace
spelling mit-1721.1/1413542022-03-25T03:28:55Z Deep compositional robotic planners that follow natural language commands Kuo, Yen-Ling Katz, Boris Barbu, Andrei We demonstrate how a sampling-based robotic planner can be augmented to learn to understand a sequence of natural language commands in a continuous configuration space to move and manipu- late objects. Our approach combines a deep network structured according to the parse of a complex command that includes objects, verbs, spatial relations, and attributes, with a sampling-based planner, RRT. A recurrent hierarchical deep network controls how the planner explores the environment, de- termines when a planned path is likely to achieve a goal, and estimates the confidence of each move to trade off exploitation and exploration between the network and the planner. Planners are designed to have near-optimal behavior when information about the task is missing, while networks learn to ex- ploit observations which are available from the environment, making the two naturally complementary. Combining the two enables generalization to new maps, new kinds of obstacles, and more complex sentences that do not occur in the training set. Little data is required to train the model despite it jointly acquiring a CNN that extracts features from the environment as it learns the meanings of words. The model provides a level of interpretability through the use of attention maps allowing users to see its reasoning steps despite being an end-to-end model. This end-to-end model allows robots to learn to follow natural language commands in challenging continuous environments. This material is based upon work supported by the Center for Brains,Minds and Machines (CBMM), funded by NSF STC award CCF-1231216. 2022-03-24T16:53:23Z 2022-03-24T16:53:23Z 2020-05-31 Article Technical Report Working Paper https://hdl.handle.net/1721.1/141354 CBMM Memo;124 application/pdf Center for Brains, Minds and Machines (CBMM), Computation and Systems Neuroscience (Cosyne)
spellingShingle Kuo, Yen-Ling
Katz, Boris
Barbu, Andrei
Deep compositional robotic planners that follow natural language commands
title Deep compositional robotic planners that follow natural language commands
title_full Deep compositional robotic planners that follow natural language commands
title_fullStr Deep compositional robotic planners that follow natural language commands
title_full_unstemmed Deep compositional robotic planners that follow natural language commands
title_short Deep compositional robotic planners that follow natural language commands
title_sort deep compositional robotic planners that follow natural language commands
url https://hdl.handle.net/1721.1/141354
work_keys_str_mv AT kuoyenling deepcompositionalroboticplannersthatfollownaturallanguagecommands
AT katzboris deepcompositionalroboticplannersthatfollownaturallanguagecommands
AT barbuandrei deepcompositionalroboticplannersthatfollownaturallanguagecommands