Discrete Time-Crystalline Order Enabled by Quantum Many-Body Scars: Entanglement Steering via Periodic Driving

The control of many-body quantum dynamics in complex systems is a key challenge in the quest to reliably produce and manipulate large-scale quantum entangled states. Recently, quench experiments in Rydberg atom arrays (Bluvstein et. al., arXiv:2012.12276) demonstrated that coherent revivals asso...

Full description

Bibliographic Details
Main Authors: Maskara, N, Michailidis, AA, Ho, WW, Bluvstein, D, Choi, S, Lukin, MD, Serbyn, M
Other Authors: Massachusetts Institute of Technology. Center for Theoretical Physics
Format: Article
Language:English
Published: American Physical Society (APS) 2022
Online Access:https://hdl.handle.net/1721.1/141455
Description
Summary:The control of many-body quantum dynamics in complex systems is a key challenge in the quest to reliably produce and manipulate large-scale quantum entangled states. Recently, quench experiments in Rydberg atom arrays (Bluvstein et. al., arXiv:2012.12276) demonstrated that coherent revivals associated with quantum many-body scars can be stabilized by periodic driving, generating stable subharmonic responses over a wide parameter regime. We analyze a simple, related model where these phenomena originate from spatiotemporal ordering in an effective Floquet unitary, corresponding to discrete time-crystalline (DTC) behavior in a prethermal regime. Unlike conventional DTC, the subharmonic response exists only for Neel-like initial states, associated with quantum scars. We predict robustness to perturbations and identify emergent timescales that could be observed in future experiments. Our results suggest a route to controlling entanglement in interacting quantum systems by combining periodic driving with many-body scars.