Quantum phases of matter on a 256-atom programmable quantum simulator
Motivated by far-reaching applications ranging from quantum simulations of complex processes in physics and chemistry to quantum information processing, a broad effort is currently underway to build large-scale programmable quantum systems. Such systems provide unique insights into strongly corre...
Main Authors: | , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Springer Science and Business Media LLC
2022
|
Online Access: | https://hdl.handle.net/1721.1/141456 |
_version_ | 1826200793998426112 |
---|---|
author | Ebadi, Sepehr Wang, Tout T Levine, Harry Keesling, Alexander Semeghini, Giulia Omran, Ahmed Bluvstein, Dolev Samajdar, Rhine Pichler, Hannes Ho, Wen Wei Choi, Soonwon Sachdev, Subir Greiner, Markus Vuletić, Vladan Lukin, Mikhail D |
author_facet | Ebadi, Sepehr Wang, Tout T Levine, Harry Keesling, Alexander Semeghini, Giulia Omran, Ahmed Bluvstein, Dolev Samajdar, Rhine Pichler, Hannes Ho, Wen Wei Choi, Soonwon Sachdev, Subir Greiner, Markus Vuletić, Vladan Lukin, Mikhail D |
author_sort | Ebadi, Sepehr |
collection | MIT |
description | Motivated by far-reaching applications ranging from quantum simulations of
complex processes in physics and chemistry to quantum information processing, a
broad effort is currently underway to build large-scale programmable quantum
systems. Such systems provide unique insights into strongly correlated quantum
matter, while at the same time enabling new methods for computation and
metrology. Here, we demonstrate a programmable quantum simulator based on
deterministically prepared two-dimensional arrays of neutral atoms, featuring
strong interactions controlled via coherent atomic excitation into Rydberg
states. Using this approach, we realize a quantum spin model with tunable
interactions for system sizes ranging from 64 to 256 qubits. We benchmark the
system by creating and characterizing high-fidelity antiferromagnetically
ordered states, and demonstrate the universal properties of an Ising quantum
phase transition in (2+1) dimensions. We then create and study several new
quantum phases that arise from the interplay between interactions and coherent
laser excitation, experimentally map the phase diagram, and investigate the
role of quantum fluctuations. Offering a new lens into the study of complex
quantum matter, these observations pave the way for investigations of exotic
quantum phases, non-equilibrium entanglement dynamics, and hardware-efficient
realization of quantum algorithms. |
first_indexed | 2024-09-23T11:41:53Z |
format | Article |
id | mit-1721.1/141456 |
institution | Massachusetts Institute of Technology |
language | English |
last_indexed | 2024-09-23T11:41:53Z |
publishDate | 2022 |
publisher | Springer Science and Business Media LLC |
record_format | dspace |
spelling | mit-1721.1/1414562022-04-02T03:24:00Z Quantum phases of matter on a 256-atom programmable quantum simulator Ebadi, Sepehr Wang, Tout T Levine, Harry Keesling, Alexander Semeghini, Giulia Omran, Ahmed Bluvstein, Dolev Samajdar, Rhine Pichler, Hannes Ho, Wen Wei Choi, Soonwon Sachdev, Subir Greiner, Markus Vuletić, Vladan Lukin, Mikhail D Motivated by far-reaching applications ranging from quantum simulations of complex processes in physics and chemistry to quantum information processing, a broad effort is currently underway to build large-scale programmable quantum systems. Such systems provide unique insights into strongly correlated quantum matter, while at the same time enabling new methods for computation and metrology. Here, we demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms, featuring strong interactions controlled via coherent atomic excitation into Rydberg states. Using this approach, we realize a quantum spin model with tunable interactions for system sizes ranging from 64 to 256 qubits. We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states, and demonstrate the universal properties of an Ising quantum phase transition in (2+1) dimensions. We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation, experimentally map the phase diagram, and investigate the role of quantum fluctuations. Offering a new lens into the study of complex quantum matter, these observations pave the way for investigations of exotic quantum phases, non-equilibrium entanglement dynamics, and hardware-efficient realization of quantum algorithms. 2022-04-01T15:01:45Z 2022-04-01T15:01:45Z 2021 2022-04-01T14:46:59Z Article http://purl.org/eprint/type/JournalArticle https://hdl.handle.net/1721.1/141456 Ebadi, Sepehr, Wang, Tout T, Levine, Harry, Keesling, Alexander, Semeghini, Giulia et al. 2021. "Quantum phases of matter on a 256-atom programmable quantum simulator." Nature, 595 (7866). en 10.1038/S41586-021-03582-4 Nature Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf Springer Science and Business Media LLC arXiv |
spellingShingle | Ebadi, Sepehr Wang, Tout T Levine, Harry Keesling, Alexander Semeghini, Giulia Omran, Ahmed Bluvstein, Dolev Samajdar, Rhine Pichler, Hannes Ho, Wen Wei Choi, Soonwon Sachdev, Subir Greiner, Markus Vuletić, Vladan Lukin, Mikhail D Quantum phases of matter on a 256-atom programmable quantum simulator |
title | Quantum phases of matter on a 256-atom programmable quantum simulator |
title_full | Quantum phases of matter on a 256-atom programmable quantum simulator |
title_fullStr | Quantum phases of matter on a 256-atom programmable quantum simulator |
title_full_unstemmed | Quantum phases of matter on a 256-atom programmable quantum simulator |
title_short | Quantum phases of matter on a 256-atom programmable quantum simulator |
title_sort | quantum phases of matter on a 256 atom programmable quantum simulator |
url | https://hdl.handle.net/1721.1/141456 |
work_keys_str_mv | AT ebadisepehr quantumphasesofmatterona256atomprogrammablequantumsimulator AT wangtoutt quantumphasesofmatterona256atomprogrammablequantumsimulator AT levineharry quantumphasesofmatterona256atomprogrammablequantumsimulator AT keeslingalexander quantumphasesofmatterona256atomprogrammablequantumsimulator AT semeghinigiulia quantumphasesofmatterona256atomprogrammablequantumsimulator AT omranahmed quantumphasesofmatterona256atomprogrammablequantumsimulator AT bluvsteindolev quantumphasesofmatterona256atomprogrammablequantumsimulator AT samajdarrhine quantumphasesofmatterona256atomprogrammablequantumsimulator AT pichlerhannes quantumphasesofmatterona256atomprogrammablequantumsimulator AT howenwei quantumphasesofmatterona256atomprogrammablequantumsimulator AT choisoonwon quantumphasesofmatterona256atomprogrammablequantumsimulator AT sachdevsubir quantumphasesofmatterona256atomprogrammablequantumsimulator AT greinermarkus quantumphasesofmatterona256atomprogrammablequantumsimulator AT vuleticvladan quantumphasesofmatterona256atomprogrammablequantumsimulator AT lukinmikhaild quantumphasesofmatterona256atomprogrammablequantumsimulator |