Quantum phases of matter on a 256-atom programmable quantum simulator

Motivated by far-reaching applications ranging from quantum simulations of complex processes in physics and chemistry to quantum information processing, a broad effort is currently underway to build large-scale programmable quantum systems. Such systems provide unique insights into strongly corre...

Full description

Bibliographic Details
Main Authors: Ebadi, Sepehr, Wang, Tout T, Levine, Harry, Keesling, Alexander, Semeghini, Giulia, Omran, Ahmed, Bluvstein, Dolev, Samajdar, Rhine, Pichler, Hannes, Ho, Wen Wei, Choi, Soonwon, Sachdev, Subir, Greiner, Markus, Vuletić, Vladan, Lukin, Mikhail D
Format: Article
Language:English
Published: Springer Science and Business Media LLC 2022
Online Access:https://hdl.handle.net/1721.1/141456
_version_ 1826200793998426112
author Ebadi, Sepehr
Wang, Tout T
Levine, Harry
Keesling, Alexander
Semeghini, Giulia
Omran, Ahmed
Bluvstein, Dolev
Samajdar, Rhine
Pichler, Hannes
Ho, Wen Wei
Choi, Soonwon
Sachdev, Subir
Greiner, Markus
Vuletić, Vladan
Lukin, Mikhail D
author_facet Ebadi, Sepehr
Wang, Tout T
Levine, Harry
Keesling, Alexander
Semeghini, Giulia
Omran, Ahmed
Bluvstein, Dolev
Samajdar, Rhine
Pichler, Hannes
Ho, Wen Wei
Choi, Soonwon
Sachdev, Subir
Greiner, Markus
Vuletić, Vladan
Lukin, Mikhail D
author_sort Ebadi, Sepehr
collection MIT
description Motivated by far-reaching applications ranging from quantum simulations of complex processes in physics and chemistry to quantum information processing, a broad effort is currently underway to build large-scale programmable quantum systems. Such systems provide unique insights into strongly correlated quantum matter, while at the same time enabling new methods for computation and metrology. Here, we demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms, featuring strong interactions controlled via coherent atomic excitation into Rydberg states. Using this approach, we realize a quantum spin model with tunable interactions for system sizes ranging from 64 to 256 qubits. We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states, and demonstrate the universal properties of an Ising quantum phase transition in (2+1) dimensions. We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation, experimentally map the phase diagram, and investigate the role of quantum fluctuations. Offering a new lens into the study of complex quantum matter, these observations pave the way for investigations of exotic quantum phases, non-equilibrium entanglement dynamics, and hardware-efficient realization of quantum algorithms.
first_indexed 2024-09-23T11:41:53Z
format Article
id mit-1721.1/141456
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T11:41:53Z
publishDate 2022
publisher Springer Science and Business Media LLC
record_format dspace
spelling mit-1721.1/1414562022-04-02T03:24:00Z Quantum phases of matter on a 256-atom programmable quantum simulator Ebadi, Sepehr Wang, Tout T Levine, Harry Keesling, Alexander Semeghini, Giulia Omran, Ahmed Bluvstein, Dolev Samajdar, Rhine Pichler, Hannes Ho, Wen Wei Choi, Soonwon Sachdev, Subir Greiner, Markus Vuletić, Vladan Lukin, Mikhail D Motivated by far-reaching applications ranging from quantum simulations of complex processes in physics and chemistry to quantum information processing, a broad effort is currently underway to build large-scale programmable quantum systems. Such systems provide unique insights into strongly correlated quantum matter, while at the same time enabling new methods for computation and metrology. Here, we demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms, featuring strong interactions controlled via coherent atomic excitation into Rydberg states. Using this approach, we realize a quantum spin model with tunable interactions for system sizes ranging from 64 to 256 qubits. We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states, and demonstrate the universal properties of an Ising quantum phase transition in (2+1) dimensions. We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation, experimentally map the phase diagram, and investigate the role of quantum fluctuations. Offering a new lens into the study of complex quantum matter, these observations pave the way for investigations of exotic quantum phases, non-equilibrium entanglement dynamics, and hardware-efficient realization of quantum algorithms. 2022-04-01T15:01:45Z 2022-04-01T15:01:45Z 2021 2022-04-01T14:46:59Z Article http://purl.org/eprint/type/JournalArticle https://hdl.handle.net/1721.1/141456 Ebadi, Sepehr, Wang, Tout T, Levine, Harry, Keesling, Alexander, Semeghini, Giulia et al. 2021. "Quantum phases of matter on a 256-atom programmable quantum simulator." Nature, 595 (7866). en 10.1038/S41586-021-03582-4 Nature Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf Springer Science and Business Media LLC arXiv
spellingShingle Ebadi, Sepehr
Wang, Tout T
Levine, Harry
Keesling, Alexander
Semeghini, Giulia
Omran, Ahmed
Bluvstein, Dolev
Samajdar, Rhine
Pichler, Hannes
Ho, Wen Wei
Choi, Soonwon
Sachdev, Subir
Greiner, Markus
Vuletić, Vladan
Lukin, Mikhail D
Quantum phases of matter on a 256-atom programmable quantum simulator
title Quantum phases of matter on a 256-atom programmable quantum simulator
title_full Quantum phases of matter on a 256-atom programmable quantum simulator
title_fullStr Quantum phases of matter on a 256-atom programmable quantum simulator
title_full_unstemmed Quantum phases of matter on a 256-atom programmable quantum simulator
title_short Quantum phases of matter on a 256-atom programmable quantum simulator
title_sort quantum phases of matter on a 256 atom programmable quantum simulator
url https://hdl.handle.net/1721.1/141456
work_keys_str_mv AT ebadisepehr quantumphasesofmatterona256atomprogrammablequantumsimulator
AT wangtoutt quantumphasesofmatterona256atomprogrammablequantumsimulator
AT levineharry quantumphasesofmatterona256atomprogrammablequantumsimulator
AT keeslingalexander quantumphasesofmatterona256atomprogrammablequantumsimulator
AT semeghinigiulia quantumphasesofmatterona256atomprogrammablequantumsimulator
AT omranahmed quantumphasesofmatterona256atomprogrammablequantumsimulator
AT bluvsteindolev quantumphasesofmatterona256atomprogrammablequantumsimulator
AT samajdarrhine quantumphasesofmatterona256atomprogrammablequantumsimulator
AT pichlerhannes quantumphasesofmatterona256atomprogrammablequantumsimulator
AT howenwei quantumphasesofmatterona256atomprogrammablequantumsimulator
AT choisoonwon quantumphasesofmatterona256atomprogrammablequantumsimulator
AT sachdevsubir quantumphasesofmatterona256atomprogrammablequantumsimulator
AT greinermarkus quantumphasesofmatterona256atomprogrammablequantumsimulator
AT vuleticvladan quantumphasesofmatterona256atomprogrammablequantumsimulator
AT lukinmikhaild quantumphasesofmatterona256atomprogrammablequantumsimulator