Quantum frequency doubling in the topological insulator Bi2Se3

© 2021, The Author(s). The nonlinear Hall effect due to Berry curvature dipole (BCD) induces frequency doubling, which was recently observed in time-reversal-invariant materials. Here we report novel electric frequency doubling in the absence of BCD on a surface of the topological insulator Bi2Se3 u...

Full description

Bibliographic Details
Main Authors: He, Pan, Isobe, Hiroki, Zhu, Dapeng, Hsu, Chuang-Han, Fu, Liang, Yang, Hyunsoo
Other Authors: Massachusetts Institute of Technology. Department of Physics
Format: Article
Language:English
Published: Springer Science and Business Media LLC 2022
Online Access:https://hdl.handle.net/1721.1/141848
Description
Summary:© 2021, The Author(s). The nonlinear Hall effect due to Berry curvature dipole (BCD) induces frequency doubling, which was recently observed in time-reversal-invariant materials. Here we report novel electric frequency doubling in the absence of BCD on a surface of the topological insulator Bi2Se3 under zero magnetic field. We observe that the frequency-doubling voltage transverse to the applied ac current shows a threefold rotational symmetry, whereas it forbids BCD. One of the mechanisms compatible with the symmetry is skew scattering, arising from the inherent chirality of the topological surface state. We introduce the Berry curvature triple, a high-order moment of the Berry curvature, to explain skew scattering under the threefold rotational symmetry. Our work paves the way to obtain a giant second-order nonlinear electric effect in high mobility quantum materials, as the skew scattering surpasses other mechanisms in the clean limit.