Remotely Controlled Proton Generation for Neuromodulation

Copyright © 2020 American Chemical Society. Understanding and modulating proton-mediated biochemical processes in living organisms have been impeded by the lack of tools to control local pH. Here, we design nanotransducers capable of converting noninvasive alternating magnetic fields (AMFs) into pro...

Full description

Bibliographic Details
Main Authors: Park, Jimin, Tabet, Anthony, Moon, Junsang, Chiang, Po-Han, Koehler, Florian, Sahasrabudhe, Atharva, Anikeeva, Polina
Other Authors: Massachusetts Institute of Technology. Department of Materials Science and Engineering
Format: Article
Language:English
Published: American Chemical Society (ACS) 2022
Online Access:https://hdl.handle.net/1721.1/142480
Description
Summary:Copyright © 2020 American Chemical Society. Understanding and modulating proton-mediated biochemical processes in living organisms have been impeded by the lack of tools to control local pH. Here, we design nanotransducers capable of converting noninvasive alternating magnetic fields (AMFs) into protons in physiological environments by combining magnetic nanoparticles (MNPs) with polymeric scaffolds. When exposed to AMFs, the heat dissipated by MNPs triggered a hydrolytic degradation of surrounding polyanhydride or polyester, releasing protons into the extracellular space. pH changes induced by these nanotransducers can be tuned by changing the polymer chemistry or AMF stimulation parameters. Remote magnetic control of local protons was shown to trigger acid-sensing ion channels and to evoke intracellular calcium influx in neurons. By offering a wireless modulation of local pH, our approach can accelerate the mechanistic investigation of the role of protons in biochemical signaling in the nervous system.