Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material
Active metasurfaces promise reconfigurable optics with drastically improved compactness, ruggedness, manufacturability and functionality compared to their traditional bulk counterparts. Optical phase-change materials (PCMs) offer an appealing material solution for active metasurface devices with the...
Main Authors: | , , , , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
Springer Science and Business Media LLC
2022
|
Online Access: | https://hdl.handle.net/1721.1/142568 |
_version_ | 1826198985289760768 |
---|---|
author | Zhang, Yifei Fowler, Clayton Liang, Junhao Azhar, Bilal Shalaginov, Mikhail Y Deckoff-Jones, Skylar An, Sensong Chou, Jeffrey B Roberts, Christopher M Liberman, Vladimir Kang, Myungkoo Ríos, Carlos Richardson, Kathleen A Rivero-Baleine, Clara Gu, Tian Zhang, Hualiang Hu, Juejun |
author2 | Massachusetts Institute of Technology. Department of Materials Science and Engineering |
author_facet | Massachusetts Institute of Technology. Department of Materials Science and Engineering Zhang, Yifei Fowler, Clayton Liang, Junhao Azhar, Bilal Shalaginov, Mikhail Y Deckoff-Jones, Skylar An, Sensong Chou, Jeffrey B Roberts, Christopher M Liberman, Vladimir Kang, Myungkoo Ríos, Carlos Richardson, Kathleen A Rivero-Baleine, Clara Gu, Tian Zhang, Hualiang Hu, Juejun |
author_sort | Zhang, Yifei |
collection | MIT |
description | Active metasurfaces promise reconfigurable optics with drastically improved compactness, ruggedness, manufacturability and functionality compared to their traditional bulk counterparts. Optical phase-change materials (PCMs) offer an appealing material solution for active metasurface devices with their large index contrast and non-volatile switching characteristics. Here we report a large-scale, electrically reconfigurable non-volatile metasurface platform based on optical PCMs. The optical PCM alloy used in the devices, Ge2Sb2Se4Te (GSST), uniquely combines giant non-volatile index modulation capability, broadband low optical loss and a large reversible switching volume, enabling notably enhanced light-matter interactions within the active optical PCM medium. Capitalizing on these favourable attributes, we demonstrated quasi-continuously tuneable active metasurfaces with record half-octave spectral tuning range and large optical contrast of over 400%. We further prototyped a polarization-insensitive phase-gradient metasurface to realize dynamic optical beam steering. |
first_indexed | 2024-09-23T11:12:37Z |
format | Article |
id | mit-1721.1/142568 |
institution | Massachusetts Institute of Technology |
language | English |
last_indexed | 2024-09-23T11:12:37Z |
publishDate | 2022 |
publisher | Springer Science and Business Media LLC |
record_format | dspace |
spelling | mit-1721.1/1425682023-04-11T20:09:11Z Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material Zhang, Yifei Fowler, Clayton Liang, Junhao Azhar, Bilal Shalaginov, Mikhail Y Deckoff-Jones, Skylar An, Sensong Chou, Jeffrey B Roberts, Christopher M Liberman, Vladimir Kang, Myungkoo Ríos, Carlos Richardson, Kathleen A Rivero-Baleine, Clara Gu, Tian Zhang, Hualiang Hu, Juejun Massachusetts Institute of Technology. Department of Materials Science and Engineering Lincoln Laboratory MIT Materials Research Laboratory Active metasurfaces promise reconfigurable optics with drastically improved compactness, ruggedness, manufacturability and functionality compared to their traditional bulk counterparts. Optical phase-change materials (PCMs) offer an appealing material solution for active metasurface devices with their large index contrast and non-volatile switching characteristics. Here we report a large-scale, electrically reconfigurable non-volatile metasurface platform based on optical PCMs. The optical PCM alloy used in the devices, Ge2Sb2Se4Te (GSST), uniquely combines giant non-volatile index modulation capability, broadband low optical loss and a large reversible switching volume, enabling notably enhanced light-matter interactions within the active optical PCM medium. Capitalizing on these favourable attributes, we demonstrated quasi-continuously tuneable active metasurfaces with record half-octave spectral tuning range and large optical contrast of over 400%. We further prototyped a polarization-insensitive phase-gradient metasurface to realize dynamic optical beam steering. 2022-05-17T18:31:46Z 2022-05-17T18:31:46Z 2021 2022-05-17T15:30:33Z Article http://purl.org/eprint/type/JournalArticle https://hdl.handle.net/1721.1/142568 Zhang, Yifei, Fowler, Clayton, Liang, Junhao, Azhar, Bilal, Shalaginov, Mikhail Y et al. 2021. "Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material." Nature Nanotechnology, 16 (6). en 10.1038/S41565-021-00881-9 Nature Nanotechnology Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf Springer Science and Business Media LLC arXiv |
spellingShingle | Zhang, Yifei Fowler, Clayton Liang, Junhao Azhar, Bilal Shalaginov, Mikhail Y Deckoff-Jones, Skylar An, Sensong Chou, Jeffrey B Roberts, Christopher M Liberman, Vladimir Kang, Myungkoo Ríos, Carlos Richardson, Kathleen A Rivero-Baleine, Clara Gu, Tian Zhang, Hualiang Hu, Juejun Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material |
title | Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material |
title_full | Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material |
title_fullStr | Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material |
title_full_unstemmed | Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material |
title_short | Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material |
title_sort | electrically reconfigurable non volatile metasurface using low loss optical phase change material |
url | https://hdl.handle.net/1721.1/142568 |
work_keys_str_mv | AT zhangyifei electricallyreconfigurablenonvolatilemetasurfaceusinglowlossopticalphasechangematerial AT fowlerclayton electricallyreconfigurablenonvolatilemetasurfaceusinglowlossopticalphasechangematerial AT liangjunhao electricallyreconfigurablenonvolatilemetasurfaceusinglowlossopticalphasechangematerial AT azharbilal electricallyreconfigurablenonvolatilemetasurfaceusinglowlossopticalphasechangematerial AT shalaginovmikhaily electricallyreconfigurablenonvolatilemetasurfaceusinglowlossopticalphasechangematerial AT deckoffjonesskylar electricallyreconfigurablenonvolatilemetasurfaceusinglowlossopticalphasechangematerial AT ansensong electricallyreconfigurablenonvolatilemetasurfaceusinglowlossopticalphasechangematerial AT choujeffreyb electricallyreconfigurablenonvolatilemetasurfaceusinglowlossopticalphasechangematerial AT robertschristopherm electricallyreconfigurablenonvolatilemetasurfaceusinglowlossopticalphasechangematerial AT libermanvladimir electricallyreconfigurablenonvolatilemetasurfaceusinglowlossopticalphasechangematerial AT kangmyungkoo electricallyreconfigurablenonvolatilemetasurfaceusinglowlossopticalphasechangematerial AT rioscarlos electricallyreconfigurablenonvolatilemetasurfaceusinglowlossopticalphasechangematerial AT richardsonkathleena electricallyreconfigurablenonvolatilemetasurfaceusinglowlossopticalphasechangematerial AT riverobaleineclara electricallyreconfigurablenonvolatilemetasurfaceusinglowlossopticalphasechangematerial AT gutian electricallyreconfigurablenonvolatilemetasurfaceusinglowlossopticalphasechangematerial AT zhanghualiang electricallyreconfigurablenonvolatilemetasurfaceusinglowlossopticalphasechangematerial AT hujuejun electricallyreconfigurablenonvolatilemetasurfaceusinglowlossopticalphasechangematerial |