Suppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Te

<jats:title>Abstract</jats:title><jats:p>Integrated nanophotonics is an emerging research direction that has attracted great interests for technologies ranging from classical to quantum computing. One of the key-components in the development of nanophotonic circuits is the phase-ch...

Full description

Bibliographic Details
Main Authors: Aryana, Kiumars, Zhang, Yifei, Tomko, John A, Hoque, Md Shafkat Bin, Hoglund, Eric R, Olson, David H, Nag, Joyeeta, Read, John C, Ríos, Carlos, Hu, Juejun, Hopkins, Patrick E
Other Authors: Massachusetts Institute of Technology. Department of Materials Science and Engineering
Format: Article
Language:English
Published: Springer Science and Business Media LLC 2022
Online Access:https://hdl.handle.net/1721.1/142619
_version_ 1826210918753632256
author Aryana, Kiumars
Zhang, Yifei
Tomko, John A
Hoque, Md Shafkat Bin
Hoglund, Eric R
Olson, David H
Nag, Joyeeta
Read, John C
Ríos, Carlos
Hu, Juejun
Hopkins, Patrick E
author2 Massachusetts Institute of Technology. Department of Materials Science and Engineering
author_facet Massachusetts Institute of Technology. Department of Materials Science and Engineering
Aryana, Kiumars
Zhang, Yifei
Tomko, John A
Hoque, Md Shafkat Bin
Hoglund, Eric R
Olson, David H
Nag, Joyeeta
Read, John C
Ríos, Carlos
Hu, Juejun
Hopkins, Patrick E
author_sort Aryana, Kiumars
collection MIT
description <jats:title>Abstract</jats:title><jats:p>Integrated nanophotonics is an emerging research direction that has attracted great interests for technologies ranging from classical to quantum computing. One of the key-components in the development of nanophotonic circuits is the phase-change unit that undergoes a solid-state phase transformation upon thermal excitation. The quaternary alloy, Ge<jats:sub>2</jats:sub>Sb<jats:sub>2</jats:sub>Se<jats:sub>4</jats:sub>Te, is one of the most promising material candidates for application in photonic circuits due to its broadband transparency and large optical contrast in the infrared spectrum. Here, we investigate the thermal properties of Ge<jats:sub>2</jats:sub>Sb<jats:sub>2</jats:sub>Se<jats:sub>4</jats:sub>Te and show that upon substituting tellurium with selenium, the thermal transport transitions from an electron dominated to a phonon dominated regime. By implementing an ultrafast mid-infrared pump-probe spectroscopy technique that allows for direct monitoring of electronic and vibrational energy carrier lifetimes in these materials, we find that this reduction in thermal conductivity is a result of a drastic change in electronic lifetimes of Ge<jats:sub>2</jats:sub>Sb<jats:sub>2</jats:sub>Se<jats:sub>4</jats:sub>Te, leading to a transition from an electron-dominated to a phonon-dominated thermal transport mechanism upon selenium substitution. In addition to thermal conductivity measurements, we provide an extensive study on the thermophysical properties of Ge<jats:sub>2</jats:sub>Sb<jats:sub>2</jats:sub>Se<jats:sub>4</jats:sub>Te thin films such as thermal boundary conductance, specific heat, and sound speed from room temperature to 400 °C across varying thicknesses.</jats:p>
first_indexed 2024-09-23T14:57:32Z
format Article
id mit-1721.1/142619
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T14:57:32Z
publishDate 2022
publisher Springer Science and Business Media LLC
record_format dspace
spelling mit-1721.1/1426192023-06-20T16:55:33Z Suppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Te Aryana, Kiumars Zhang, Yifei Tomko, John A Hoque, Md Shafkat Bin Hoglund, Eric R Olson, David H Nag, Joyeeta Read, John C Ríos, Carlos Hu, Juejun Hopkins, Patrick E Massachusetts Institute of Technology. Department of Materials Science and Engineering <jats:title>Abstract</jats:title><jats:p>Integrated nanophotonics is an emerging research direction that has attracted great interests for technologies ranging from classical to quantum computing. One of the key-components in the development of nanophotonic circuits is the phase-change unit that undergoes a solid-state phase transformation upon thermal excitation. The quaternary alloy, Ge<jats:sub>2</jats:sub>Sb<jats:sub>2</jats:sub>Se<jats:sub>4</jats:sub>Te, is one of the most promising material candidates for application in photonic circuits due to its broadband transparency and large optical contrast in the infrared spectrum. Here, we investigate the thermal properties of Ge<jats:sub>2</jats:sub>Sb<jats:sub>2</jats:sub>Se<jats:sub>4</jats:sub>Te and show that upon substituting tellurium with selenium, the thermal transport transitions from an electron dominated to a phonon dominated regime. By implementing an ultrafast mid-infrared pump-probe spectroscopy technique that allows for direct monitoring of electronic and vibrational energy carrier lifetimes in these materials, we find that this reduction in thermal conductivity is a result of a drastic change in electronic lifetimes of Ge<jats:sub>2</jats:sub>Sb<jats:sub>2</jats:sub>Se<jats:sub>4</jats:sub>Te, leading to a transition from an electron-dominated to a phonon-dominated thermal transport mechanism upon selenium substitution. In addition to thermal conductivity measurements, we provide an extensive study on the thermophysical properties of Ge<jats:sub>2</jats:sub>Sb<jats:sub>2</jats:sub>Se<jats:sub>4</jats:sub>Te thin films such as thermal boundary conductance, specific heat, and sound speed from room temperature to 400 °C across varying thicknesses.</jats:p> 2022-05-19T18:04:31Z 2022-05-19T18:04:31Z 2021 2022-05-19T17:55:45Z Article http://purl.org/eprint/type/JournalArticle https://hdl.handle.net/1721.1/142619 Aryana, Kiumars, Zhang, Yifei, Tomko, John A, Hoque, Md Shafkat Bin, Hoglund, Eric R et al. 2021. "Suppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Te." Nature Communications, 12 (1). en 10.1038/S41467-021-27121-X Nature Communications Creative Commons Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0 application/pdf Springer Science and Business Media LLC Nature
spellingShingle Aryana, Kiumars
Zhang, Yifei
Tomko, John A
Hoque, Md Shafkat Bin
Hoglund, Eric R
Olson, David H
Nag, Joyeeta
Read, John C
Ríos, Carlos
Hu, Juejun
Hopkins, Patrick E
Suppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Te
title Suppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Te
title_full Suppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Te
title_fullStr Suppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Te
title_full_unstemmed Suppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Te
title_short Suppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Te
title_sort suppressed electronic contribution in thermal conductivity of ge2sb2se4te
url https://hdl.handle.net/1721.1/142619
work_keys_str_mv AT aryanakiumars suppressedelectroniccontributioninthermalconductivityofge2sb2se4te
AT zhangyifei suppressedelectroniccontributioninthermalconductivityofge2sb2se4te
AT tomkojohna suppressedelectroniccontributioninthermalconductivityofge2sb2se4te
AT hoquemdshafkatbin suppressedelectroniccontributioninthermalconductivityofge2sb2se4te
AT hoglundericr suppressedelectroniccontributioninthermalconductivityofge2sb2se4te
AT olsondavidh suppressedelectroniccontributioninthermalconductivityofge2sb2se4te
AT nagjoyeeta suppressedelectroniccontributioninthermalconductivityofge2sb2se4te
AT readjohnc suppressedelectroniccontributioninthermalconductivityofge2sb2se4te
AT rioscarlos suppressedelectroniccontributioninthermalconductivityofge2sb2se4te
AT hujuejun suppressedelectroniccontributioninthermalconductivityofge2sb2se4te
AT hopkinspatricke suppressedelectroniccontributioninthermalconductivityofge2sb2se4te