Behavioral Modeling for Microgrid Simulation

Trends in power system simulation that demand computationally-intensive, physics-based models may impede the acquisition of useful results for applications like condition-based maintenance, electrical plant load analysis (EPLA), and the scheduling and tasking of finite generation and distribution re...

Full description

Bibliographic Details
Main Authors: Deeter, Thomas, Green, Daisy H, Kidwell, Stephen, Kane, Thomas J, Donnal, John S, Vasquez, Katherine, Sievenpiper, Bartholomew, Leeb, Steven B
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers (IEEE) 2022
Online Access:https://hdl.handle.net/1721.1/143737
Description
Summary:Trends in power system simulation that demand computationally-intensive, physics-based models may impede the acquisition of useful results for applications like condition-based maintenance, electrical plant load analysis (EPLA), and the scheduling and tasking of finite generation and distribution resources. A tool that can quickly evaluate many scenarios, as opposed to intense, high fidelity modeling of a single operating scenario, may best serve these applications. This paper presents a behavioral simulator that can quickly emulate the operation of a relatively large collection of electrical loads, providing 'what-if' evaluations of various operating scenarios and conditions for more complete exploration of a design or plant operating envelope. The presented simulator can provide time-series data of power system operation under loading conditions and usage assumptions of interest. Comparisons to field data collected from a microgrid on-board a 270-foot (82 meter) US Coast Guard medium-endurance cutter demonstrate the utility of this tool and approach.