Lazo: A Cardinality-Based Method for Coupled Estimation of Jaccard Similarity and Containment
© 2019 IEEE. Data analysts often need to find datasets that are similar (i.e., have high overlap) or that are subsets of one another (i.e., one contains the other). Exactly computing such relationships is expensive because it entails an all-pairs comparison between all values in all datasets, an O(n...
Main Authors: | Castro Fernandez, Raul, Min, Jisoo, Nava, Demitri, Madden, Samuel |
---|---|
Andre forfattere: | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory |
Format: | Article |
Sprog: | English |
Udgivet: |
Institute of Electrical and Electronics Engineers (IEEE)
2022
|
Online adgang: | https://hdl.handle.net/1721.1/143769 |
Lignende værker
-
A Jaccard Similarity-Based Model to Match Stakeholders for Collaboration in an Industry-Driven Portal
af: İnanç Kabasakal, et al.
Udgivet: (2021-03-01) -
Multi-Label Feature Selection with Graph-based Ant Colony Optimization and Generalized Jaccard Similarity
af: Sabah Robitan Mahmood, et al.
Udgivet: (2024-05-01) -
Penggunaan Jaccard Similarity Coefficient dalam Optimasi Proses Rekrutmen Karyawan Berbasis Profil dan Kompetensi
af: Ivan Michael Siregar, et al.
Udgivet: (2024-08-01) -
FactorJoin: A New Cardinality Estimation Framework for Join Queries
af: Wu, Ziniu, et al.
Udgivet: (2023) -
Los lazos creativos
af: Juan M.C. Larrosa
Udgivet: (2025-01-01)