Summary: | <jats:p>Differential privacy promises to enable data sharing and general data analytics while protecting individual privacy. Because the private data is often stored in the form of relational database that supports SQL queries, making SQL-based analytics differentially private is thus critical. However, the existing SQL-based differentially private systems either only focus on specific type of SQL queries such as COUNT or substantially modify the database engine, thus obstructing adoption in practice. Worse yet, these systems often do not guarantee the desired accuracy by the applications. In this demonstration, using the driving trace workload from Cambridge Mobile Telematics (CMT), we show that our ATLANTIC system, as a database middleware, enforces differential privacy for real-world SQL queries with provable accuracy guarantees and is compatible with existing databases. Moreover, using a sampling-based technique, ATLANTIC significantly speeds up the query execution, yet effectively amplifying the privacy guarantee.</jats:p>
|