Beyond Expertise and Roles: A Framework to Characterize the Stakeholders of Interpretable Machine Learning and their Needs

To ensure accountability and mitigate harm, it is critical that diverse stakeholders can interrogate black-box automated systems and find information that is understandable, relevant, and useful to them. In this paper, we eschew prior expertise- and role-based categorizations of interpretability...

詳細記述

書誌詳細
主要な著者: Suresh, Harini, Gomez, Steven R, Nam, Kevin K, Satyanarayan, Arvind
その他の著者: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
フォーマット: 論文
言語:English
出版事項: Association for Computing Machinery (ACM) 2022
オンライン・アクセス:https://hdl.handle.net/1721.1/143861

類似資料