MedKnowts: Unified Documentation and Information Retrieval for Electronic Health Records
Clinical documentation can be transformed by Electronic Health Records, yet the documentation process is still a tedious, time-consuming, and error-prone process. Clinicians are faced with multi-faceted requirements and fragmented interfaces for information exploration and documentation. These ch...
Glavni autori: | Murray, Luke, Gopinath, Divya, Agrawal, Monica, Horng, Steven, Sontag, David, Karger, David R |
---|---|
Daljnji autori: | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory |
Format: | Članak |
Jezik: | English |
Izdano: |
ACM
2022
|
Online pristup: | https://hdl.handle.net/1721.1/143893 |
Slični predmeti
-
Enhanced Clinical Documentation
od: Murray, Luke, i dr.
Izdano: (2022) -
Unified Documentation and Information Retrieval for Electronic Health Records
od: Murray, Luke
Izdano: (2022) -
Robustly Extracting Medical Knowledge from EHRs: A Case Study of Learning a Health Knowledge Graph
od: Chen, Irene Y, i dr.
Izdano: (2021) -
Learning a Health Knowledge Graph from Electronic Medical Records
od: Rotmensch, Maya, i dr.
Izdano: (2018) -
A PubMed search filter for efficiently retrieving exercise training studies
od: Dawei Yin, i dr.
Izdano: (2024-12-01)