Summary: | <jats:title>Abstract</jats:title>
<jats:p>We study stochastic projection-free methods for constrained optimization of smooth functions on Riemannian manifolds, i.e., with additional constraints beyond the parameter domain being a manifold. Specifically, we introduce stochastic Riemannian Frank–Wolfe (Fw) methods for nonconvex and geodesically convex problems. We present algorithms for both purely stochastic optimization and finite-sum problems. For the latter, we develop variance-reduced methods, including a Riemannian adaptation of the recently proposed Spider technique. For all settings, we recover convergence rates that are comparable to the best-known rates for their Euclidean counterparts. Finally, we discuss applications to two classic tasks: the computation of the Karcher mean of positive definite matrices and Wasserstein barycenters for multivariate normal distributions. For both tasks, stochastic Fw methods yield state-of-the-art empirical performance.</jats:p>
|