Subset Selection with Shrinkage: Sparse Linear Modeling When the SNR Is Low
<jats:p> Learning Compact High-Dimensional Models in Noisy Environments </jats:p><jats:p> Building compact, interpretable statistical models where the output depends upon a small number of input features is a well-known problem in modern analytics applications. A fundamental tool u...
Главные авторы: | Mazumder, Rahul, Radchenko, Peter, Dedieu, Antoine |
---|---|
Другие авторы: | Sloan School of Management |
Формат: | Статья |
Язык: | English |
Опубликовано: |
Institute for Operations Research and the Management Sciences (INFORMS)
2022
|
Online-ссылка: | https://hdl.handle.net/1721.1/144220 |
Схожие документы
-
The Discrete Dantzig Selector: Estimating Sparse Linear Models via Mixed Integer Linear Optimization
по: Mazumder, Rahul, и др.
Опубликовано: (2019) -
Hierarchical Modeling and Shrinkage for User Session LengthPrediction in Media Streaming
по: Zhu, Zhen, и др.
Опубликовано: (2019) -
Learning Sparse Classifiers: Continuous and Mixed Integer Optimization Perspectives
по: Dedieu, Antoine, и др.
Опубликовано: (2022) -
Sparse learning : statistical and optimization perspectives
по: Dedieu, Antoine
Опубликовано: (2018) -
Fast Best Subset Selection: Coordinate Descent and Local Combinatorial Optimization Algorithms
по: Hazimeh, Hussein, и др.
Опубликовано: (2021)