Feasibility study of compact Neutron Resonance Transmission Analysis using a linac, a fusion-based neutron generator, and an isotopic source

Various nuclear security applications such as fuel enrichment analysis and warhead verification seek to identify nuclear materials in a black box target. Neutron Resonance Transmission Analysis (NRTA) is a spectroscopic technique which uses resonant neutron absorption to identify isotopic compositio...

Full description

Bibliographic Details
Main Author: Levine, Peninah
Other Authors: Danagoulian, Areg
Format: Thesis
Published: Massachusetts Institute of Technology 2022
Online Access:https://hdl.handle.net/1721.1/144692
_version_ 1811072599410606080
author Levine, Peninah
author2 Danagoulian, Areg
author_facet Danagoulian, Areg
Levine, Peninah
author_sort Levine, Peninah
collection MIT
description Various nuclear security applications such as fuel enrichment analysis and warhead verification seek to identify nuclear materials in a black box target. Neutron Resonance Transmission Analysis (NRTA) is a spectroscopic technique which uses resonant neutron absorption to identify isotopic compositions. Previous NRTA experiments have used expensive beam line facilities with kilometer-long accelerators. This work explores feasibility of compact NRTA configurations using a linear accelerator (linac), fusion-based neutron generator, and isotopic source. Monte Carlo simulations show that these configurations trade off between complexity and flux, which is related to measurement time. A 5.5 MeV linac may yield the highest epithermal (1-10 eV) neutron flux (10⁷ neutrons s⁻¹), but conversion of electrons to neutrons adds complexity, bulk, and expense. A deuterium-tritium (DT) fusion-based neutron generator produces a moderate neutron flux (10⁶ neutrons/s) and complexity relative to the linac and isotopic configurations. Isotopic NRTA may provide the simplest solution but limits flux to 10⁴ neutrons s⁻¹. Preliminary isotopic experiments indicate that limited source activity poses a challenge for overcoming gamma background. This thesis discusses feasibility of each proposed NRTA setup in various security applications.
first_indexed 2024-09-23T09:08:37Z
format Thesis
id mit-1721.1/144692
institution Massachusetts Institute of Technology
last_indexed 2024-09-23T09:08:37Z
publishDate 2022
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/1446922022-08-30T03:58:17Z Feasibility study of compact Neutron Resonance Transmission Analysis using a linac, a fusion-based neutron generator, and an isotopic source Levine, Peninah Danagoulian, Areg Massachusetts Institute of Technology. Department of Nuclear Science and Engineering Various nuclear security applications such as fuel enrichment analysis and warhead verification seek to identify nuclear materials in a black box target. Neutron Resonance Transmission Analysis (NRTA) is a spectroscopic technique which uses resonant neutron absorption to identify isotopic compositions. Previous NRTA experiments have used expensive beam line facilities with kilometer-long accelerators. This work explores feasibility of compact NRTA configurations using a linear accelerator (linac), fusion-based neutron generator, and isotopic source. Monte Carlo simulations show that these configurations trade off between complexity and flux, which is related to measurement time. A 5.5 MeV linac may yield the highest epithermal (1-10 eV) neutron flux (10⁷ neutrons s⁻¹), but conversion of electrons to neutrons adds complexity, bulk, and expense. A deuterium-tritium (DT) fusion-based neutron generator produces a moderate neutron flux (10⁶ neutrons/s) and complexity relative to the linac and isotopic configurations. Isotopic NRTA may provide the simplest solution but limits flux to 10⁴ neutrons s⁻¹. Preliminary isotopic experiments indicate that limited source activity poses a challenge for overcoming gamma background. This thesis discusses feasibility of each proposed NRTA setup in various security applications. S.B. S.M. 2022-08-29T16:05:12Z 2022-08-29T16:05:12Z 2022-05 2022-06-17T16:14:40.855Z Thesis https://hdl.handle.net/1721.1/144692 In Copyright - Educational Use Permitted Copyright MIT http://rightsstatements.org/page/InC-EDU/1.0/ application/pdf Massachusetts Institute of Technology
spellingShingle Levine, Peninah
Feasibility study of compact Neutron Resonance Transmission Analysis using a linac, a fusion-based neutron generator, and an isotopic source
title Feasibility study of compact Neutron Resonance Transmission Analysis using a linac, a fusion-based neutron generator, and an isotopic source
title_full Feasibility study of compact Neutron Resonance Transmission Analysis using a linac, a fusion-based neutron generator, and an isotopic source
title_fullStr Feasibility study of compact Neutron Resonance Transmission Analysis using a linac, a fusion-based neutron generator, and an isotopic source
title_full_unstemmed Feasibility study of compact Neutron Resonance Transmission Analysis using a linac, a fusion-based neutron generator, and an isotopic source
title_short Feasibility study of compact Neutron Resonance Transmission Analysis using a linac, a fusion-based neutron generator, and an isotopic source
title_sort feasibility study of compact neutron resonance transmission analysis using a linac a fusion based neutron generator and an isotopic source
url https://hdl.handle.net/1721.1/144692
work_keys_str_mv AT levinepeninah feasibilitystudyofcompactneutronresonancetransmissionanalysisusingalinacafusionbasedneutrongeneratorandanisotopicsource