Pure quark and gluon observables in collinear drop

Abstract We construct a class of pure quark and gluon observables by using the collinear drop grooming technique. The construction is based on linear combinations of multiple cumulative distributions of the jet mass in collinear drop, whose specific weights are...

Full description

Bibliographic Details
Main Authors: Stewart, Iain W., Yao, Xiaojun
Other Authors: Massachusetts Institute of Technology. Department of Physics
Format: Article
Language:English
Published: Springer Berlin Heidelberg 2022
Online Access:https://hdl.handle.net/1721.1/145478
Description
Summary:Abstract We construct a class of pure quark and gluon observables by using the collinear drop grooming technique. The construction is based on linear combinations of multiple cumulative distributions of the jet mass in collinear drop, whose specific weights are fully predicted perturbatively. This yields observables which obtain their values purely from quarks (or purely from gluons) in a wide region of phase space. We demonstrate this by showing that these observables are effective in two phase space regions, one dominated by perturbative resummation and one dominated by nonperturbative effects. The nonperturbative effects are included using shape functions which only appear as a common factor in the linear combinations constructed. We test this construction using a numerical analysis with next-to-leading logarithmic resummation and various shape function models, as well as analyzing these observables with Pythia and Vincia. Choices for the collinear drop parameters are optimized for experimental use.