P III /P V ═O-Catalyzed Intermolecular N–N Bond Formation: Cross-Selective Reductive Coupling of Nitroarenes and Anilines

An organophosphorus-catalyzed method for the synthesis of unsymmetrical hydrazines by cross-selective intermolecular N-N reductive coupling is reported. This method employs a small ring phosphacycle (phosphetane) catalyst together with hydrosilane as the terminal reductant to drive reductive couplin...

Full description

Bibliographic Details
Main Authors: Li, Gen, Miller, Steven P, Radosevich, Alexander T
Other Authors: Massachusetts Institute of Technology. Department of Chemistry
Format: Article
Language:English
Published: American Chemical Society (ACS) 2022
Online Access:https://hdl.handle.net/1721.1/145514
Description
Summary:An organophosphorus-catalyzed method for the synthesis of unsymmetrical hydrazines by cross-selective intermolecular N-N reductive coupling is reported. This method employs a small ring phosphacycle (phosphetane) catalyst together with hydrosilane as the terminal reductant to drive reductive coupling of nitroarenes and anilines with good chemoselectivity and functional group tolerance. Mechanistic investigations support an autotandem catalytic reaction cascade in which the organophosphorus catalyst drives two sequential and mechanistically distinct reduction events via PIII/PV═O cycling in order to furnish the target N-N bond.