Motivic decompositions for the Hilbert scheme of points of a K3 surface
<jats:title>Abstract</jats:title> <jats:p>We construct an explicit, multiplicative Chow–Künneth decomposition for the Hilbert scheme of points of a K3 surface. We further refine this decomposition with respect to the action of the Looijenga–Lunts–Verbitsky Lie algeb...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
Walter de Gruyter GmbH
2022
|
Online Access: | https://hdl.handle.net/1721.1/145816 |
_version_ | 1826201866846863360 |
---|---|
author | Neguţ, Andrei Oberdieck, Georg Yin, Qizheng |
author2 | Massachusetts Institute of Technology. Department of Mathematics |
author_facet | Massachusetts Institute of Technology. Department of Mathematics Neguţ, Andrei Oberdieck, Georg Yin, Qizheng |
author_sort | Neguţ, Andrei |
collection | MIT |
description | <jats:title>Abstract</jats:title>
<jats:p>We construct an explicit, multiplicative Chow–Künneth decomposition for the Hilbert scheme of points of a K3 surface. We further refine this decomposition with respect to the action of the Looijenga–Lunts–Verbitsky Lie algebra.</jats:p> |
first_indexed | 2024-09-23T11:58:28Z |
format | Article |
id | mit-1721.1/145816 |
institution | Massachusetts Institute of Technology |
language | English |
last_indexed | 2024-09-23T11:58:28Z |
publishDate | 2022 |
publisher | Walter de Gruyter GmbH |
record_format | dspace |
spelling | mit-1721.1/1458162022-10-14T03:26:34Z Motivic decompositions for the Hilbert scheme of points of a K3 surface Neguţ, Andrei Oberdieck, Georg Yin, Qizheng Massachusetts Institute of Technology. Department of Mathematics <jats:title>Abstract</jats:title> <jats:p>We construct an explicit, multiplicative Chow–Künneth decomposition for the Hilbert scheme of points of a K3 surface. We further refine this decomposition with respect to the action of the Looijenga–Lunts–Verbitsky Lie algebra.</jats:p> 2022-10-13T13:47:53Z 2022-10-13T13:47:53Z 2021 2022-10-13T13:36:09Z Article http://purl.org/eprint/type/JournalArticle https://hdl.handle.net/1721.1/145816 Neguţ, Andrei, Oberdieck, Georg and Yin, Qizheng. 2021. "Motivic decompositions for the Hilbert scheme of points of a K3 surface." Journal für die reine und angewandte Mathematik, 2021 (778). en 10.1515/CRELLE-2021-0015 Journal für die reine und angewandte Mathematik Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf Walter de Gruyter GmbH De Gruyter |
spellingShingle | Neguţ, Andrei Oberdieck, Georg Yin, Qizheng Motivic decompositions for the Hilbert scheme of points of a K3 surface |
title | Motivic decompositions for the Hilbert scheme of points of a K3 surface |
title_full | Motivic decompositions for the Hilbert scheme of points of a K3 surface |
title_fullStr | Motivic decompositions for the Hilbert scheme of points of a K3 surface |
title_full_unstemmed | Motivic decompositions for the Hilbert scheme of points of a K3 surface |
title_short | Motivic decompositions for the Hilbert scheme of points of a K3 surface |
title_sort | motivic decompositions for the hilbert scheme of points of a k3 surface |
url | https://hdl.handle.net/1721.1/145816 |
work_keys_str_mv | AT negutandrei motivicdecompositionsforthehilbertschemeofpointsofak3surface AT oberdieckgeorg motivicdecompositionsforthehilbertschemeofpointsofak3surface AT yinqizheng motivicdecompositionsforthehilbertschemeofpointsofak3surface |