Motivic decompositions for the Hilbert scheme of points of a K3 surface

<jats:title>Abstract</jats:title> <jats:p>We construct an explicit, multiplicative Chow–Künneth decomposition for the Hilbert scheme of points of a K3 surface. We further refine this decomposition with respect to the action of the Looijenga–Lunts–Verbitsky Lie algeb...

Full description

Bibliographic Details
Main Authors: Neguţ, Andrei, Oberdieck, Georg, Yin, Qizheng
Other Authors: Massachusetts Institute of Technology. Department of Mathematics
Format: Article
Language:English
Published: Walter de Gruyter GmbH 2022
Online Access:https://hdl.handle.net/1721.1/145816
_version_ 1826201866846863360
author Neguţ, Andrei
Oberdieck, Georg
Yin, Qizheng
author2 Massachusetts Institute of Technology. Department of Mathematics
author_facet Massachusetts Institute of Technology. Department of Mathematics
Neguţ, Andrei
Oberdieck, Georg
Yin, Qizheng
author_sort Neguţ, Andrei
collection MIT
description <jats:title>Abstract</jats:title> <jats:p>We construct an explicit, multiplicative Chow–Künneth decomposition for the Hilbert scheme of points of a K3 surface. We further refine this decomposition with respect to the action of the Looijenga–Lunts–Verbitsky Lie algebra.</jats:p>
first_indexed 2024-09-23T11:58:28Z
format Article
id mit-1721.1/145816
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T11:58:28Z
publishDate 2022
publisher Walter de Gruyter GmbH
record_format dspace
spelling mit-1721.1/1458162022-10-14T03:26:34Z Motivic decompositions for the Hilbert scheme of points of a K3 surface Neguţ, Andrei Oberdieck, Georg Yin, Qizheng Massachusetts Institute of Technology. Department of Mathematics <jats:title>Abstract</jats:title> <jats:p>We construct an explicit, multiplicative Chow–Künneth decomposition for the Hilbert scheme of points of a K3 surface. We further refine this decomposition with respect to the action of the Looijenga–Lunts–Verbitsky Lie algebra.</jats:p> 2022-10-13T13:47:53Z 2022-10-13T13:47:53Z 2021 2022-10-13T13:36:09Z Article http://purl.org/eprint/type/JournalArticle https://hdl.handle.net/1721.1/145816 Neguţ, Andrei, Oberdieck, Georg and Yin, Qizheng. 2021. "Motivic decompositions for the Hilbert scheme of points of a K3 surface." Journal für die reine und angewandte Mathematik, 2021 (778). en 10.1515/CRELLE-2021-0015 Journal für die reine und angewandte Mathematik Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf Walter de Gruyter GmbH De Gruyter
spellingShingle Neguţ, Andrei
Oberdieck, Georg
Yin, Qizheng
Motivic decompositions for the Hilbert scheme of points of a K3 surface
title Motivic decompositions for the Hilbert scheme of points of a K3 surface
title_full Motivic decompositions for the Hilbert scheme of points of a K3 surface
title_fullStr Motivic decompositions for the Hilbert scheme of points of a K3 surface
title_full_unstemmed Motivic decompositions for the Hilbert scheme of points of a K3 surface
title_short Motivic decompositions for the Hilbert scheme of points of a K3 surface
title_sort motivic decompositions for the hilbert scheme of points of a k3 surface
url https://hdl.handle.net/1721.1/145816
work_keys_str_mv AT negutandrei motivicdecompositionsforthehilbertschemeofpointsofak3surface
AT oberdieckgeorg motivicdecompositionsforthehilbertschemeofpointsofak3surface
AT yinqizheng motivicdecompositionsforthehilbertschemeofpointsofak3surface