Protecting Chiller Systems from Cyberattack Using a Systems Thinking Approach

Recent world events and geopolitics have brought the vulnerability of critical infrastructure to cyberattacks to the forefront. While there has been considerable attention to attacks on Information Technology (IT) systems, such as data theft and ransomware, the vulnerabilities and dangers posed by i...

Full description

Bibliographic Details
Main Authors: Khan, Shaharyar, Madnick, Stuart
Other Authors: Sloan School of Management
Format: Article
Published: Multidisciplinary Digital Publishing Institute 2022
Online Access:https://hdl.handle.net/1721.1/146316
Description
Summary:Recent world events and geopolitics have brought the vulnerability of critical infrastructure to cyberattacks to the forefront. While there has been considerable attention to attacks on Information Technology (IT) systems, such as data theft and ransomware, the vulnerabilities and dangers posed by industrial control systems (ICS) have received significantly less attention. What is very different is that industrial control systems can be made to do things that could destroy equipment or even harm people. For example, in 2021 the US encountered a cyberattack on a water treatment plant in Florida that could have resulted in serious injuries or even death. These risks are based on the unique physical characteristics of these industrial systems. In this paper, we present a holistic, integrated safety and security analysis, we call Cybersafety, based on the STAMP (System-Theoretic Accident Model and Processes) framework, for one such industrial system—an industrial chiller plant—as an example. In this analysis, we identify vulnerabilities emerging from interactions between technology, operator actions as well as organizational structure, and provide recommendations to mitigate resulting loss scenarios in a systematic manner.