Prediction of Atomic Stress Fields using Cycle-Consistent Adversarial Neural Networks based on Unpaired and Unmatched Sparse Datasets
<jats:p>Deep learning holds great promise for applications in materials science, including the discovery of physical laws and materials design.</jats:p>
Huvudupphovsman: | |
---|---|
Övriga upphovsmän: | |
Materialtyp: | Artikel |
Språk: | English |
Publicerad: |
Royal Society of Chemistry (RSC)
2022
|
Länkar: | https://hdl.handle.net/1721.1/146552 |