Summary: | Abstract
The Simons Observatory (SO) will detect and map the temperature and polarization of the millimeter-wavelength sky from Cerro Toco, Chile, across a range of angular scales, providing rich data sets for cosmological and astrophysical analysis. The SO focal planes will be tiled with compact hexagonal packages, called universal focal-plane modules (UFMs), in which the transition-edge sensor (TES) detectors are coupled to 100 mK microwave-multiplexing electronics. Three different types of dichroic TES detector arrays with bands centered at 30/40, 90/150, and 220/280 GHz will be implemented across the 49 planned UFMs. The 90/150 GHz and 220/280 GHz arrays each contain 1764 TESes, which are read out with two 910x multiplexer circuits. The modules contain a series of routed silicon chips, which are packaged together in a controlled electromagnetic environment and operated at 100 mK. Following an overview of the module design, we report on early results from the first 220/280 GHz UFM, including detector yield, as well as readout and detector noise levels.
|