Mapping transcriptomic vector fields of single cells

Single-cell (sc)RNA-seq, together with RNA velocity and metabolic labeling, reveals cellular states and transitions at unprecedented resolution. Fully exploiting these data, however, requires kinetic models capable of unveiling governing regulatory functions. Here, we introduce an analytical framewo...

Full description

Bibliographic Details
Main Authors: Qiu, Xiaojie, Zhang, Yan, Martin-Rufino, Jorge D, Weng, Chen, Hosseinzadeh, Shayan, Yang, Dian, Pogson, Angela N, Hein, Marco Y, Hoi (Joseph) Min, Kyung, Wang, Li, Grody, Emanuelle I, Shurtleff, Matthew J, Yuan, Ruoshi, Xu, Song, Ma, Yian, Replogle, Joseph M, Lander, Eric S, Darmanis, Spyros, Bahar, Ivet, Sankaran, Vijay G, Xing, Jianhua, Weissman, Jonathan S
Other Authors: Massachusetts Institute of Technology. Department of Biology
Format: Article
Language:English
Published: Elsevier BV 2022
Online Access:https://hdl.handle.net/1721.1/146854
_version_ 1826196329433399296
author Qiu, Xiaojie
Zhang, Yan
Martin-Rufino, Jorge D
Weng, Chen
Hosseinzadeh, Shayan
Yang, Dian
Pogson, Angela N
Hein, Marco Y
Hoi (Joseph) Min, Kyung
Wang, Li
Grody, Emanuelle I
Shurtleff, Matthew J
Yuan, Ruoshi
Xu, Song
Ma, Yian
Replogle, Joseph M
Lander, Eric S
Darmanis, Spyros
Bahar, Ivet
Sankaran, Vijay G
Xing, Jianhua
Weissman, Jonathan S
author2 Massachusetts Institute of Technology. Department of Biology
author_facet Massachusetts Institute of Technology. Department of Biology
Qiu, Xiaojie
Zhang, Yan
Martin-Rufino, Jorge D
Weng, Chen
Hosseinzadeh, Shayan
Yang, Dian
Pogson, Angela N
Hein, Marco Y
Hoi (Joseph) Min, Kyung
Wang, Li
Grody, Emanuelle I
Shurtleff, Matthew J
Yuan, Ruoshi
Xu, Song
Ma, Yian
Replogle, Joseph M
Lander, Eric S
Darmanis, Spyros
Bahar, Ivet
Sankaran, Vijay G
Xing, Jianhua
Weissman, Jonathan S
author_sort Qiu, Xiaojie
collection MIT
description Single-cell (sc)RNA-seq, together with RNA velocity and metabolic labeling, reveals cellular states and transitions at unprecedented resolution. Fully exploiting these data, however, requires kinetic models capable of unveiling governing regulatory functions. Here, we introduce an analytical framework dynamo (https://github.com/aristoteleo/dynamo-release), which infers absolute RNA velocity, reconstructs continuous vector fields that predict cell fates, employs differential geometry to extract underlying regulations, and ultimately predicts optimal reprogramming paths and perturbation outcomes. We highlight dynamo's power to overcome fundamental limitations of conventional splicing-based RNA velocity analyses to enable accurate velocity estimations on a metabolically labeled human hematopoiesis scRNA-seq dataset. Furthermore, differential geometry analyses reveal mechanisms driving early megakaryocyte appearance and elucidate asymmetrical regulation within the PU.1-GATA1 circuit. Leveraging the least-action-path method, dynamo accurately predicts drivers of numerous hematopoietic transitions. Finally, in silico perturbations predict cell-fate diversions induced by gene perturbations. Dynamo, thus, represents an important step in advancing quantitative and predictive theories of cell-state transitions.
first_indexed 2024-09-23T10:25:12Z
format Article
id mit-1721.1/146854
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T10:25:12Z
publishDate 2022
publisher Elsevier BV
record_format dspace
spelling mit-1721.1/1468542023-03-09T04:29:20Z Mapping transcriptomic vector fields of single cells Qiu, Xiaojie Zhang, Yan Martin-Rufino, Jorge D Weng, Chen Hosseinzadeh, Shayan Yang, Dian Pogson, Angela N Hein, Marco Y Hoi (Joseph) Min, Kyung Wang, Li Grody, Emanuelle I Shurtleff, Matthew J Yuan, Ruoshi Xu, Song Ma, Yian Replogle, Joseph M Lander, Eric S Darmanis, Spyros Bahar, Ivet Sankaran, Vijay G Xing, Jianhua Weissman, Jonathan S Massachusetts Institute of Technology. Department of Biology Single-cell (sc)RNA-seq, together with RNA velocity and metabolic labeling, reveals cellular states and transitions at unprecedented resolution. Fully exploiting these data, however, requires kinetic models capable of unveiling governing regulatory functions. Here, we introduce an analytical framework dynamo (https://github.com/aristoteleo/dynamo-release), which infers absolute RNA velocity, reconstructs continuous vector fields that predict cell fates, employs differential geometry to extract underlying regulations, and ultimately predicts optimal reprogramming paths and perturbation outcomes. We highlight dynamo's power to overcome fundamental limitations of conventional splicing-based RNA velocity analyses to enable accurate velocity estimations on a metabolically labeled human hematopoiesis scRNA-seq dataset. Furthermore, differential geometry analyses reveal mechanisms driving early megakaryocyte appearance and elucidate asymmetrical regulation within the PU.1-GATA1 circuit. Leveraging the least-action-path method, dynamo accurately predicts drivers of numerous hematopoietic transitions. Finally, in silico perturbations predict cell-fate diversions induced by gene perturbations. Dynamo, thus, represents an important step in advancing quantitative and predictive theories of cell-state transitions. 2022-12-13T16:21:33Z 2022-12-13T16:21:33Z 2022 2022-12-13T16:11:31Z Article http://purl.org/eprint/type/JournalArticle https://hdl.handle.net/1721.1/146854 Qiu, Xiaojie, Zhang, Yan, Martin-Rufino, Jorge D, Weng, Chen, Hosseinzadeh, Shayan et al. 2022. "Mapping transcriptomic vector fields of single cells." Cell, 185 (4). en 10.1016/J.CELL.2021.12.045 Cell Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/ application/pdf Elsevier BV PMC
spellingShingle Qiu, Xiaojie
Zhang, Yan
Martin-Rufino, Jorge D
Weng, Chen
Hosseinzadeh, Shayan
Yang, Dian
Pogson, Angela N
Hein, Marco Y
Hoi (Joseph) Min, Kyung
Wang, Li
Grody, Emanuelle I
Shurtleff, Matthew J
Yuan, Ruoshi
Xu, Song
Ma, Yian
Replogle, Joseph M
Lander, Eric S
Darmanis, Spyros
Bahar, Ivet
Sankaran, Vijay G
Xing, Jianhua
Weissman, Jonathan S
Mapping transcriptomic vector fields of single cells
title Mapping transcriptomic vector fields of single cells
title_full Mapping transcriptomic vector fields of single cells
title_fullStr Mapping transcriptomic vector fields of single cells
title_full_unstemmed Mapping transcriptomic vector fields of single cells
title_short Mapping transcriptomic vector fields of single cells
title_sort mapping transcriptomic vector fields of single cells
url https://hdl.handle.net/1721.1/146854
work_keys_str_mv AT qiuxiaojie mappingtranscriptomicvectorfieldsofsinglecells
AT zhangyan mappingtranscriptomicvectorfieldsofsinglecells
AT martinrufinojorged mappingtranscriptomicvectorfieldsofsinglecells
AT wengchen mappingtranscriptomicvectorfieldsofsinglecells
AT hosseinzadehshayan mappingtranscriptomicvectorfieldsofsinglecells
AT yangdian mappingtranscriptomicvectorfieldsofsinglecells
AT pogsonangelan mappingtranscriptomicvectorfieldsofsinglecells
AT heinmarcoy mappingtranscriptomicvectorfieldsofsinglecells
AT hoijosephminkyung mappingtranscriptomicvectorfieldsofsinglecells
AT wangli mappingtranscriptomicvectorfieldsofsinglecells
AT grodyemanuellei mappingtranscriptomicvectorfieldsofsinglecells
AT shurtleffmatthewj mappingtranscriptomicvectorfieldsofsinglecells
AT yuanruoshi mappingtranscriptomicvectorfieldsofsinglecells
AT xusong mappingtranscriptomicvectorfieldsofsinglecells
AT mayian mappingtranscriptomicvectorfieldsofsinglecells
AT reploglejosephm mappingtranscriptomicvectorfieldsofsinglecells
AT landererics mappingtranscriptomicvectorfieldsofsinglecells
AT darmanisspyros mappingtranscriptomicvectorfieldsofsinglecells
AT baharivet mappingtranscriptomicvectorfieldsofsinglecells
AT sankaranvijayg mappingtranscriptomicvectorfieldsofsinglecells
AT xingjianhua mappingtranscriptomicvectorfieldsofsinglecells
AT weissmanjonathans mappingtranscriptomicvectorfieldsofsinglecells