Summary: | Abstract
In ref. [1], we analyzed the reflected entropy (SR) in random tensor networks motivated by its proposed duality to the entanglement wedge cross section (EW) in holographic theories,
S
R
=
2
EW
4
G
$$ {S}_R=2\frac{EW}{4G} $$
. In this paper, we discover further details of this duality by analyzing a simple network consisting of a chain of two random tensors. This setup models a multiboundary wormhole. We show that the reflected entanglement spectrum is controlled by representation theory of the Temperley-Lieb algebra. In the semiclassical limit motivated by holography, the spectrum takes the form of a sum over superselection sectors associated to different irreducible representations of the Temperley-Lieb algebra and labelled by a topological index k ∈ ℤ>0. Each sector contributes to the reflected entropy an amount
2
k
EW
4
G
$$ 2k\frac{EW}{4G} $$
weighted by its probability. We provide a gravitational interpretation in terms of fixed-area, higher-genus multiboundary wormholes with genus 2k – 1 initial value slices. These wormholes appear in the gravitational description of the canonical purification. We confirm the reflected entropy holographic duality away from phase transitions. We also find important non-perturbative contributions from the novel geometries with k ≥ 2 near phase transitions, resolving the discontinuous transition in SR. Along with analytic arguments, we provide numerical evidence for our results. We finally speculate that signatures of a non-trivial von Neumann algebra, connected to the Temperley-Lieb algebra, will emerge from a modular flowed version of reflected entropy.
|