Scalable Structure Learning, Inference, and Analysis with Probabilistic Programs
How can we automate and scale up the processes of learning accurate probabilistic models of complex data and obtaining principled solutions to probabilistic inference and analysis queries? This thesis presents efficient techniques for addressing these fundamental challenges grounded in probabilistic...
主要作者: | Saad, Feras Ahmad Khaled |
---|---|
其他作者: | Mansinghka, Vikash K. |
格式: | Thesis |
出版: |
Massachusetts Institute of Technology
2023
|
在线阅读: | https://hdl.handle.net/1721.1/147226 |
相似书籍
-
Probabilistic data analysis with probabilistic programming
由: Saad, Feras Ahmad Khaled
出版: (2018) -
SPPL: probabilistic programming with fast exact symbolic inference
由: Saad, Feras A, et al.
出版: (2022) -
Gen: A General-Purpose Probabilistic Programming System with Programmable Inference
由: Cusumano-Towner, Marco F., et al.
出版: (2018) -
Amortized inference and model learning for probabilistic programming
由: Le, TA
出版: (2019) -
Probabilistic programming with programmable inference
由: Mansinghka, Vikash K., et al.
出版: (2021)