Assessing the role of top-down techniques for improving regional estimates of artisanal and small-scale gold mining mercury emissions

ASGM is the world’s largest source of anthropogenic Hg emissions and is common in Latin America, Sub-Saharan Africa, South Asia, and East Asia. However, the amount of mercury emitted from ASGM and contributing to global mercury emissions is subject to substantial uncertainty. Bottom-up studies have...

Full description

Bibliographic Details
Main Author: Dlamini, Thandolwethu
Other Authors: Selin, Noelle
Format: Thesis
Published: Massachusetts Institute of Technology 2023
Online Access:https://hdl.handle.net/1721.1/147481
_version_ 1810990642936938496
author Dlamini, Thandolwethu
author2 Selin, Noelle
author_facet Selin, Noelle
Dlamini, Thandolwethu
author_sort Dlamini, Thandolwethu
collection MIT
description ASGM is the world’s largest source of anthropogenic Hg emissions and is common in Latin America, Sub-Saharan Africa, South Asia, and East Asia. However, the amount of mercury emitted from ASGM and contributing to global mercury emissions is subject to substantial uncertainty. Bottom-up studies have quantified sources of Hg, including ASGM, using data on underlying activities to estimate regional and global totals. In contrast, top-down studies have used atmospheric concentration measurements and models to constrain Hg emissions. However, no top-down estimates have yet been calculated for ASGM emissions. With GEOS-Chem’s global-scale chemical transport model for Hg, we investigate whether and how ASGM-related Hg emissions can be quantified from existing regional measurement sites for gaseous elemental mercury (GEM). By combining our top-down method with existing bottom-up data, we improve estimates of Hg emissions from ASGM activities, using Peru and the Madre de Dios region of South America as case studies. We find that quantitative constraints on ASGM emissions are better provided by information on the shape of the probability distribution of GEM concentrations, such as the interquartile range and the 95% range, suggesting possible design guidelines for monitoring networks. The model-based analysis offers insights into improving regional estimates of ASGM emissions.
first_indexed 2024-09-23T12:41:03Z
format Thesis
id mit-1721.1/147481
institution Massachusetts Institute of Technology
last_indexed 2024-09-23T12:41:03Z
publishDate 2023
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/1474812023-01-20T03:32:44Z Assessing the role of top-down techniques for improving regional estimates of artisanal and small-scale gold mining mercury emissions Dlamini, Thandolwethu Selin, Noelle Massachusetts Institute of Technology. Institute for Data, Systems, and Society Technology and Policy Program ASGM is the world’s largest source of anthropogenic Hg emissions and is common in Latin America, Sub-Saharan Africa, South Asia, and East Asia. However, the amount of mercury emitted from ASGM and contributing to global mercury emissions is subject to substantial uncertainty. Bottom-up studies have quantified sources of Hg, including ASGM, using data on underlying activities to estimate regional and global totals. In contrast, top-down studies have used atmospheric concentration measurements and models to constrain Hg emissions. However, no top-down estimates have yet been calculated for ASGM emissions. With GEOS-Chem’s global-scale chemical transport model for Hg, we investigate whether and how ASGM-related Hg emissions can be quantified from existing regional measurement sites for gaseous elemental mercury (GEM). By combining our top-down method with existing bottom-up data, we improve estimates of Hg emissions from ASGM activities, using Peru and the Madre de Dios region of South America as case studies. We find that quantitative constraints on ASGM emissions are better provided by information on the shape of the probability distribution of GEM concentrations, such as the interquartile range and the 95% range, suggesting possible design guidelines for monitoring networks. The model-based analysis offers insights into improving regional estimates of ASGM emissions. S.M. 2023-01-19T19:53:16Z 2023-01-19T19:53:16Z 2022-09 2022-10-03T18:51:56.608Z Thesis https://hdl.handle.net/1721.1/147481 In Copyright - Educational Use Permitted Copyright MIT http://rightsstatements.org/page/InC-EDU/1.0/ application/pdf Massachusetts Institute of Technology
spellingShingle Dlamini, Thandolwethu
Assessing the role of top-down techniques for improving regional estimates of artisanal and small-scale gold mining mercury emissions
title Assessing the role of top-down techniques for improving regional estimates of artisanal and small-scale gold mining mercury emissions
title_full Assessing the role of top-down techniques for improving regional estimates of artisanal and small-scale gold mining mercury emissions
title_fullStr Assessing the role of top-down techniques for improving regional estimates of artisanal and small-scale gold mining mercury emissions
title_full_unstemmed Assessing the role of top-down techniques for improving regional estimates of artisanal and small-scale gold mining mercury emissions
title_short Assessing the role of top-down techniques for improving regional estimates of artisanal and small-scale gold mining mercury emissions
title_sort assessing the role of top down techniques for improving regional estimates of artisanal and small scale gold mining mercury emissions
url https://hdl.handle.net/1721.1/147481
work_keys_str_mv AT dlaminithandolwethu assessingtheroleoftopdowntechniquesforimprovingregionalestimatesofartisanalandsmallscalegoldminingmercuryemissions