Interpreting radial correlation doppler reflectometry using gyrokinetic simulations

A linear response, local model for the DBS amplitude applied to gyrokinetic simulations shows that radial correlation Doppler reflectometry measurements (RCDR, Schirmer et al 2007 Plasma Phys. Control. Fusion 49 1019) are not sensitive to the average turbulence radial correlation length, but to a...

Full description

Bibliographic Details
Main Authors: Ruiz Ruiz, J, Parra, FI, Hall-Chen, VH, Christen, N, Barnes, M, Candy, J, Garcia, J, Giroud, C, Guttenfelder, W, Hillesheim, JC, Holland, C, Howard, NT, Ren, Y, White, AE
Other Authors: Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Format: Article
Language:English
Published: IOP Publishing 2023
Online Access:https://hdl.handle.net/1721.1/147632
_version_ 1811092925051830272
author Ruiz Ruiz, J
Parra, FI
Hall-Chen, VH
Christen, N
Barnes, M
Candy, J
Garcia, J
Giroud, C
Guttenfelder, W
Hillesheim, JC
Holland, C
Howard, NT
Ren, Y
White, AE
author2 Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
author_facet Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Ruiz Ruiz, J
Parra, FI
Hall-Chen, VH
Christen, N
Barnes, M
Candy, J
Garcia, J
Giroud, C
Guttenfelder, W
Hillesheim, JC
Holland, C
Howard, NT
Ren, Y
White, AE
author_sort Ruiz Ruiz, J
collection MIT
description A linear response, local model for the DBS amplitude applied to gyrokinetic simulations shows that radial correlation Doppler reflectometry measurements (RCDR, Schirmer et al 2007 Plasma Phys. Control. Fusion 49 1019) are not sensitive to the average turbulence radial correlation length, but to a correlation length that depends on the binormal wavenumber k⊥ selected by the Doppler backscattering (DBS) signal. Nonlinear gyrokinetic simulations show that the turbulence naturally exhibits a nonseparable power law spectrum in wavenumber space, leading to a power law dependence of the radial correlation length with binormal wavenumber lr ∼ Ck−α ⊥ (α ≈ 1) which agrees with the inverse proportionality relationship between the measured lr and k⊥ observed in experiments (Fern´andez-Marina et al 2014 Nucl. Fusion 54 072001). This new insight indicates that RCDR characterizes the eddy aspect ratio in the perpendicular plane to the magnetic field. It also motivates future use of a nonseparable turbulent spectrum to quantitatively interpret RCDR and potentially other turbulence diagnostics. The radial correlation length is only measurable when the radial resolution at the cutoff location Wn satisfies Wn ≪ lr , while the measurement becomes dominated by Wn for Wn ≫ lr . This suggests that lr is likely to be inaccessible for electron-scale DBS measurements (k⊥ρs > 1). The effect of Wn on ion-scale radial correlation lengths could be nonnegligible.
first_indexed 2024-09-23T15:35:20Z
format Article
id mit-1721.1/147632
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T15:35:20Z
publishDate 2023
publisher IOP Publishing
record_format dspace
spelling mit-1721.1/1476322023-01-24T03:06:39Z Interpreting radial correlation doppler reflectometry using gyrokinetic simulations Ruiz Ruiz, J Parra, FI Hall-Chen, VH Christen, N Barnes, M Candy, J Garcia, J Giroud, C Guttenfelder, W Hillesheim, JC Holland, C Howard, NT Ren, Y White, AE Massachusetts Institute of Technology. Department of Nuclear Science and Engineering A linear response, local model for the DBS amplitude applied to gyrokinetic simulations shows that radial correlation Doppler reflectometry measurements (RCDR, Schirmer et al 2007 Plasma Phys. Control. Fusion 49 1019) are not sensitive to the average turbulence radial correlation length, but to a correlation length that depends on the binormal wavenumber k⊥ selected by the Doppler backscattering (DBS) signal. Nonlinear gyrokinetic simulations show that the turbulence naturally exhibits a nonseparable power law spectrum in wavenumber space, leading to a power law dependence of the radial correlation length with binormal wavenumber lr ∼ Ck−α ⊥ (α ≈ 1) which agrees with the inverse proportionality relationship between the measured lr and k⊥ observed in experiments (Fern´andez-Marina et al 2014 Nucl. Fusion 54 072001). This new insight indicates that RCDR characterizes the eddy aspect ratio in the perpendicular plane to the magnetic field. It also motivates future use of a nonseparable turbulent spectrum to quantitatively interpret RCDR and potentially other turbulence diagnostics. The radial correlation length is only measurable when the radial resolution at the cutoff location Wn satisfies Wn ≪ lr , while the measurement becomes dominated by Wn for Wn ≫ lr . This suggests that lr is likely to be inaccessible for electron-scale DBS measurements (k⊥ρs > 1). The effect of Wn on ion-scale radial correlation lengths could be nonnegligible. 2023-01-23T15:48:56Z 2023-01-23T15:48:56Z 2022 2023-01-23T14:51:40Z Article http://purl.org/eprint/type/JournalArticle https://hdl.handle.net/1721.1/147632 Ruiz Ruiz, J, Parra, FI, Hall-Chen, VH, Christen, N, Barnes, M et al. 2022. "Interpreting radial correlation doppler reflectometry using gyrokinetic simulations." Plasma Physics and Controlled Fusion, 64 (5). en 10.1088/1361-6587/AC5916 Plasma Physics and Controlled Fusion Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/ application/pdf IOP Publishing IOP Publishing
spellingShingle Ruiz Ruiz, J
Parra, FI
Hall-Chen, VH
Christen, N
Barnes, M
Candy, J
Garcia, J
Giroud, C
Guttenfelder, W
Hillesheim, JC
Holland, C
Howard, NT
Ren, Y
White, AE
Interpreting radial correlation doppler reflectometry using gyrokinetic simulations
title Interpreting radial correlation doppler reflectometry using gyrokinetic simulations
title_full Interpreting radial correlation doppler reflectometry using gyrokinetic simulations
title_fullStr Interpreting radial correlation doppler reflectometry using gyrokinetic simulations
title_full_unstemmed Interpreting radial correlation doppler reflectometry using gyrokinetic simulations
title_short Interpreting radial correlation doppler reflectometry using gyrokinetic simulations
title_sort interpreting radial correlation doppler reflectometry using gyrokinetic simulations
url https://hdl.handle.net/1721.1/147632
work_keys_str_mv AT ruizruizj interpretingradialcorrelationdopplerreflectometryusinggyrokineticsimulations
AT parrafi interpretingradialcorrelationdopplerreflectometryusinggyrokineticsimulations
AT hallchenvh interpretingradialcorrelationdopplerreflectometryusinggyrokineticsimulations
AT christenn interpretingradialcorrelationdopplerreflectometryusinggyrokineticsimulations
AT barnesm interpretingradialcorrelationdopplerreflectometryusinggyrokineticsimulations
AT candyj interpretingradialcorrelationdopplerreflectometryusinggyrokineticsimulations
AT garciaj interpretingradialcorrelationdopplerreflectometryusinggyrokineticsimulations
AT giroudc interpretingradialcorrelationdopplerreflectometryusinggyrokineticsimulations
AT guttenfelderw interpretingradialcorrelationdopplerreflectometryusinggyrokineticsimulations
AT hillesheimjc interpretingradialcorrelationdopplerreflectometryusinggyrokineticsimulations
AT hollandc interpretingradialcorrelationdopplerreflectometryusinggyrokineticsimulations
AT howardnt interpretingradialcorrelationdopplerreflectometryusinggyrokineticsimulations
AT reny interpretingradialcorrelationdopplerreflectometryusinggyrokineticsimulations
AT whiteae interpretingradialcorrelationdopplerreflectometryusinggyrokineticsimulations