Bayesian chemical reaction neural network for autonomous kinetic uncertainty quantification

<jats:p>We develop Bayesian Chemical Reaction Neural Network (B-CRNN), a method to infer chemical reaction models and provide the associated uncertainty purely from data without prior knowledge of reaction templates.</jats:p>

Détails bibliographiques
Auteurs principaux: Li, Qiaofeng, Chen, Huaibo, Koenig, Benjamin C, Deng, Sili
Autres auteurs: Massachusetts Institute of Technology. Department of Mechanical Engineering
Format: Article
Langue:English
Publié: Royal Society of Chemistry (RSC) 2023
Accès en ligne:https://hdl.handle.net/1721.1/148449
Description
Résumé:<jats:p>We develop Bayesian Chemical Reaction Neural Network (B-CRNN), a method to infer chemical reaction models and provide the associated uncertainty purely from data without prior knowledge of reaction templates.</jats:p>