Motility of Different Gastric Helicobacter spp.

<i>Helicobacter</i> spp., including the well-known human gastric pathogen <i>H. pylori</i>, can cause gastric diseases in humans and other mammals. They are Gram-negative bacteria that colonize the gastric epithelium and use their multiple flagella to move across the protecti...

Full description

Bibliographic Details
Main Authors: Bansil, Rama, Constantino, Maira A., Su-Arcaro, Clover, Liao, Wentian, Shen, Zeli, Fox, James G.
Other Authors: Massachusetts Institute of Technology. Department of Biological Engineering
Format: Article
Published: Multidisciplinary Digital Publishing Institute 2023
Online Access:https://hdl.handle.net/1721.1/148470
Description
Summary:<i>Helicobacter</i> spp., including the well-known human gastric pathogen <i>H. pylori</i>, can cause gastric diseases in humans and other mammals. They are Gram-negative bacteria that colonize the gastric epithelium and use their multiple flagella to move across the protective gastric mucus layer. The flagella of different <i>Helicobacter</i> spp. vary in their location and number. This review focuses on the swimming characteristics of different species with different flagellar architectures and cell shapes. All <i>Helicobacter</i> spp. use a run-reverse-reorient mechanism to swim in aqueous solutions, as well as in gastric mucin. Comparisons of different strains and mutants of <i>H. pylori</i> varying in cell shape and the number of flagella show that their swimming speed increases with an increasing number of flagella and is somewhat enhanced with a helical cell body shape. The swimming mechanism of <i>H. suis</i>, which has bipolar flagella, is more complex than that of unipolar <i>H. pylori.&nbsp;H. suis</i> exhibits multiple modes of flagellar orientation while swimming. The pH-dependent viscosity and gelation of gastric mucin significantly impact the motility of <i>Helicobacter</i> spp. In the absence of urea, these bacteria do not swim in mucin gel at pH &lt; 4, even though their flagellar bundle rotates.