Achieving acceleration in distributed optimization via direct discretization of the heavy-ball ODE
© 2019 American Automatic Control Council. We develop a distributed algorithm for convex Empirical Risk Minimization, the problem of minimizing large but finite sum of convex functions over networks. The proposed algorithm is derived from directly discretizing the second-order heavy-ball differentia...
Hlavní autoři: | , , , |
---|---|
Další autoři: | |
Médium: | Článek |
Jazyk: | English |
Vydáno: |
IEEE
2023
|
On-line přístup: | https://hdl.handle.net/1721.1/148596 |