Robustly Learning General Mixtures of Gaussians
Principais autores: | Liu, Allen, Moitra, Ankur |
---|---|
Outros Autores: | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science |
Formato: | Artigo |
Idioma: | English |
Publicado em: |
ACM
2023
|
Acesso em linha: | https://hdl.handle.net/1721.1/148662 |
Registros relacionados
-
Settling the Robust Learnability of Mixtures of Gaussians
por: Liu, Allen, et al.
Publicado em: (2022) -
Provable ICA with Unknown Gaussian Noise, and Implications for Gaussian Mixtures and Autoencoders
por: Arora, Sanjeev, et al.
Publicado em: (2017) -
Robustly Learning a Gaussian: Getting Optimal Error, Efficiently
por: Stewart, Alistair, et al.
Publicado em: (2018) -
Beyond the low-degree algorithm: mixtures of subcubes and their applications
por: Chen, Sitan, et al.
Publicado em: (2022) -
Beyond the low-degree algorithm: mixtures of subcubes and their applications
por: Chen, Sitan, et al.
Publicado em: (2021)